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= A system of n linear equatlons in n Varlables
ay X; + 8y, X, +0+ a4y, X, = by

Ay X, T4y, X +-+a, X, = b,

a, x +a,,x,+--+a,,x,=b,,

n,n n
can be expressed as a matrix equation Ax = h:
SR SRR CRR T AR Vb X R 6
N X2 b2
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\an,l an,2 Sn an,n / \xn \bn

* If b =0, then system is homogeneous; otherwise it is
nonhomogeneous.



Nonsmgular Case

« If the coefficient matrix A is nonsmgular then it is
invertible and we can solve Ax = b as follows:

Ax=b = A'Ax=A"b =Ix=A""D =x=A"D

* This solution 1s therefore unique. Also, if b =0, it follows
that the unique solution to Ax=0is x = A0 = 0.

* Thus if A 1s nonsingular, then the only solution to Ax =0 1s
the trivial solution x = 0.




Example 2 Nonsmgular Case (10f3)

From a prev1ous example we know that the matrix A below

1s nonsingular with inverse as given.

R R ~3/4 -5/4 1/4
Lrs 2 A S S S A Y
-1/4 =3/4 -1/4

b L
K,

2 -1 -1
Using the definition of matrix multiplication, it follows that
the only solution of Ax=01s x = 0:

-3/4 -5/4 1/4\/0 0
x=A"0=|-5/4 -7/4 -1/4|0|=|0
-1/4 -3/4 -1/4){0 0

i
RaloY




Example 2 Nonsmgular Case (2 of 3)

i
K

Now let’s solve the nonhomogeneous linear system Ax=b

IS
below using A; D e

Ix, +O0x, +3x, = -2
4x, —-3x,+8x;= 0

This system of equations can be written as Ax = b, where

1 -2 3 X, 7
A=|-1 1 -2 x=[x,], b=|=5
2 -1.-1 X, 4

Then
-3/4 -=-5/4 1/4 o >

X A D e e S G e T Ay
~1/4 =3/4 -1/4) 4 1



Example 2 Nonsmgular Case (3 of 3)

S Alternatwely, we could solve the nonhomogeneous hnear
system Ax = b below using row reduction.
X —2x,+3x, =7
— X +X, = 2%, ==5
2x, =%, —x, = 4
% To do so, form the augmented matrix (A|b) and reduce,
using elementary row operations.
 EOU SRS W AR AT R S S S SO RS B S
[Ab)=51 1 -2 =50 Sl 1y 2] =l0 0 sl 2
et i R R AR R TS BN KR AR RS N b
e 2 hene Sei el IR, X R X —2x, +3x; =7 2
g R M S RS S R RS B e A L o D ]
¢ R R R B Al R Yo W TR e | 1




Smgular Case

« If the coefficient matrix A is s1ngu1ar then Al does not
exist, and either a solution to Ax = b does not exist, or there
1s more than one solution (not unique).

Further, the homogeneous system Ax = 0 has more than one
solution. That is, in addition to the trivial solution x = 0,
there are infinitely many nontrivial solutions.

Ax

The nonhomogeneous case Ax = b has no solution unless
(b, y) = 0, for all vectors y satisfying A"y = 0, where A™ is
the adjoint of A.

* In this case, Ax = b has solutions (infinitely many), each of
the form x = x(© + E, where x(¥ is a particular solution of

Ax

Ax =b, and & is any solution of Ax = 0.




Example A Smgular Case (10f2)

% Solve the nonhomogeneous linear system Ax = b below usmg row
reduction. Observe that the coefficients are nearly the same as in the

previous example ~2x,+3x,=b,

*  We will form the augmented matrix (A|b) and use some of the steps in
Example 1 to transform the matrix more quickly

s 23t R4S b,
N ) 5 A R R A N By N B
2o sal S e 0 O O b +3b,+b,
X - —2x, +3x; =bh
— X, — X, =-b-b, — b, +3b,+b, =0
0 =b+3b,+b,




Example A Smgular Case (20f2)

X —2x,+3x,=b,

2x, — %, +3x, = b,

b 14
P LY

%

Ax

From the previous slide, if b1 + 3b2 +b, # 0, there is no solution
to the system of equations

Requiring that b, +3b, + b, =0, assume, for example, that
b=2,b,=1b=-5

Then the reduced augmented matrix (A|b) becomes:

| ERESSULTARE b\ x . =2% *3x =2 -x, -4 -1\ (-4
0 1 -1 -b-b, |— X, = % =-3—=>x=| x-3|—=x=x| l|+|-3
0 0 0 b+3b,+b, 0 =0 X ] 0

A%

It can be shown that the second term in x is a solution of the
nonhomogeneous equation and that the first term is the most
general solution of the homogeneous equation, letting x; =« ,
where a is arbitrary



L1near Dependence and Independenee

i A set of vectors x(l) x(z) x(”> is llnearly dependent if
there exists scalars ¢y, ¢,,..., ¢, not all zero, such that

s Ly

x (2)

+e, x4t x =0

# If the only solution of

x @ piigex” =0

+,X
isc;=c,=...=c, =0, then xt), x®_ x® is linearly

independent.



Example 3 Lmear Dependence (1 of 2)

« Determine whether the followmg vectors are linear
dependent or linearly independent.
1 2 -4
D=1 2 x®@ =[1] x® = 1
—1 3 —11

#* We need to solve

)

(2)
cX +c,X

+c,x¥ =0
o RO ARSI R S
¢l 2(+c| 1|+ 1|=|0| <= Basil l|fc, |=|0

S B T S SR A




xO =

1 7 -4
2 X Iy w8 =1 1]
-1 3 -11

Example 3 L1near Dependence (2 of 2)

% We can reduce the augmented matrix (A|b) as before.

TR S s B Eh N ST G RS
Ab)=|"2 "1 1 0|>l0 -3 9 0|—=f0 T2<3 0
R v s B B R SR e i RS R

¢ +2¢, —-4c¢; =0 -2
— ¢, -3¢, = 0— ¢=¢| 3|wherec, canbeanynumber
0 =0 1

% So, the vectors are linearly dependent: ifc, = -1, 2x"” -3x? -x¥ =0
% Alternatively, we could show that the following determinant is zero:
1 2 -4
det(x;)=/2 1 1]=0
-1 3 -11




L1near Independence and Invertlblhty

« Consider the prevmus two examples

¢ The first matrix was known to be nonsingular, and its column vectors
were linearly independent.

¢ The second matrix was known to be singular, and its column vectors
were linearly dependent.

Ax

This 1s true in general: the columns (or rows) of A are linearly
independent iff A is nonsingular iff A-! exists.

* Also, A 1s nonsingular iff detA = 0, hence columns (or rows)
of A are linearly independent iff detA = 0.

Further, if C = AB, then det(C) = det(A)det(B). Thus if the
columns (or rows) of A and B are linearly independent, then
the columns (or rows) of C are also.

A%




Lmear Dependence & Veetor Funetlons

% Now consider vector functions x(l)(t), x(z)(t),. s x(”)(t), Where
(X (1)

k
X, (1)

(k)(t)= ” k=1,2,...,7’l, t€[=(a’ﬁ)

\x;(nk) (1)

% As before, x()(7), x?)(?),..., x")(7) is linearly dependent on / if
there exists scalars ¢y, ¢,,..., ¢, not all zero, such that

s “no

cx @)+, x? @)+ +c,x" () =0, forall t€1

x Otherwise x\)(7), x2)(¢),..., x"(¢) is linearly independent on /
See text for more discussion on this.




Elgenvalues and Elgenvectors

« The eqn Ax = y can be viewed as a linear transformatlon
that maps (or transforms) x into a new vectory.

* Nonzero vectors x that transform into multiples of
themselves are important in many applications.

* Thus we solve Ax = Ax or equivalently, (A-ADx = 0.

* This equation has a nonzero solution if we choose A such
that det(A-AI) = 0.

* Such values of A are called eigenvalues of A, and the
nonzero solutions x are called eigenvectors.




Example 4: Elgenvalues (1 of 3)

% Find the elgenvalues and elgenvectors of the matrix A.

3 -1
A
o
* Solution: Choose A such that det(A-Al) = 0, as follows.

det(A - AI)= de‘{(i __21) _’1(; ?))

3-A —1
= det
( 4 —2—&)

=(3-A)-2-4)-(-1)4)
=1 -A-2=(A-2)1+1)
== A ==




Example 4: Flrst Elgenvector (2 of 3)

% To find the e1genvectors of the matrix A, we need to solve
(A-ADx=0for A=2 and A=-1.

* Figenvector for A=2: Solve

T e N T

and this implies that x, =x, . So

X 1 1
x') = ( 2) = c(l), c arbitrary — choose x"" = (1)

X,




Example 4: Second Elgenvector (3 of 3)

S Elgenvector for A=-1: Solve

e (% I

and this implies that x, =4x, So

X 1 1
x? =| "'|=¢| | c arbitrary — choose x* =
4x |~ |4 4




Normahzed Elgenvectors

% From the prev1ous example we see that elgenvectors are
determined up to a nonzero multiplicative constant.

# [f this constant is specified in some particular way, then the
eigenvector 1s said to be normalized.

* For example, eigenvectors are sometimes normalized by
choosing the constant so that |x|| = (x, x)”> = 1.




Algebralc and Geometrlc Multlphclty

« In ﬁndmg the elgenvalues )\ of an 1 x n matrix A we solve
det(A-Al) = 0.

* Since this involves finding the determinant of an n x n
matrix, the problem reduces to finding roots of an nth
degree polynomial.

* Denote these roots, or eigenvalues, by A, A,, ..., A

# [f an eigenvalue is repeated m times, then its algebraic
multiplicity 1s m.

»* Each eigenvalue has at least one eigenvector, and a
eigenvalue of algebraic multiplicity m may have g linearly
independent eigevectors, 1 < g <= m, and q 1s called the

geometric multiplicity of the eigenvalue.




E1genveetors and L1near Independence

« Ifan elgenvalue A has algebrale mult1p11e1ty 1, then it is sald
to be simple, and the geometric multiplicity 1s 1 also.

# If each eigenvalue of an n X n matrix A is simple, then A
has n distinct eigenvalues. It can be shown that the »
eigenvectors corresponding to these eigenvalues are linearly
independent.

* [f an eigenvalue has one or more repeated eigenvalues, then
there may be fewer than » linearly independent eigenvectors
since for each repeated eigenvalue, we may have g < m.
This may lead to complications in solving systems of
differential equations.




Example B Elgenvalues (1 of 5)

% Find the elgenvalues and elgenvectors of the matrix A.

§ S AR |

A=|1 0 1

1 1 O

* Solution: Choose A such that det(A-Al) = 0, as follows.
—A | 1
det(A—Al)=det| 1 -4 1
1 Y &
= +31+2

=(A-2)(A+1)
= A =2, A =-1 A =-
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0, as follows.

X

Lx,
S Lx,

2: Solve (A-AD)x =

[

i

» Eigenvector for A

0
1 O
0

1 -2
-2
1 1

1
1
2

—

=0
=0
=0

SRk
—1x,

Ox,

-1 0
-1 0
0 0

1 0O
0 1
0 0

1 -2 0
0 -1 0
0 0

1
1
0 O

]

1
1
1

], c arbitrary — choose x") = [
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Example 5 2nd and 3fd Elgenvectors (3 of 5)

S Elgenvector for A=-1: Solve (A )LI)X O as follows.

R B I R S I e e i
sl ol oo Ox, )
1 1T 1 0 0O 0 0 O Ox, =0

ket =1 -1
—-x?=| x, =x2[ 1|+x,| 0}, where x,,x, arbitrary
X, 0 1
1 (0
— choose x* =| 0|, x¥ =| 1
-1 -1




Example N Elgenvectors of A (4 of 5)

% Thus three elgenvectors of A are

1 1 0
xP =1 \ x? = 0 : x3) = 1
1 -1 -1

where x(?, x® correspond to the double eigenvalue A = - 1.
» It can be shown that x(), x®, x(® are linearly independent.
% Hence A is a 3 x 3 symmetric matrix (A = A”) with 3 real

eigenvalues and 3 linearly independent eigenvectors.

0O 1 1
A=|1 0 1
1 1 0



Example N Elgenvectors of A (5 of 5)

S Note that we could have we had chosen

1 1 1
xP =1 ; x? = 0 , x (3o
1 -1 1

* Then the eigenvectors are orthogonal, since
(Xa)’X(z)): 0, (Xa),x(s) )= 0, (X(2>’X<3> )= 0

* Thus A 1s a 3 x 3 symmetric matrix with 3 real eigenvalues
and 3 linearly independent orthogonal eigenvectors.




Herm1t1an Matrlces

5 A self-ad]mnt or Hermitian matrlx satlsﬁes A= A
where we recall that A*= AT .

Thus for a Hermitian matrix, a;, = a;.

A%

Note that 1f A has real entries and 1s symmetric (see last
example), then A is Hermitian.

Ax

* An n x n Hermitian matrix A has the following properties:
+ All eigenvalues of A are real.
+ There exists a full set of n linearly independent eigenvectors of A.

o If x( and x® are eigenvectors that correspond to different
eigenvalues of A, then x() and x® are orthogonal.

+ Corresponding to an eigenvalue of algebraic multiplicity m, it 1s
possible to choose m mutually orthogonal eigenvectors, and hence A
has a full set of # linearly independent orthogonal eigenvectors.




