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!   A system of n linear equations in n variables, 

 can be expressed as a matrix equation Ax = b: 
 
 
 
 

!   If b = 0, then system is homogeneous; otherwise it is 
nonhomogeneous.  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

nnnnnn

n

n

b

b
b

x

x
x

aaa

aaa
aaa








2

1

2

1

,2,1,

,22,21,2

,12,11,1

,,22,11,

2,222,211,2

1,122,111,1

nnnnnn

nn

nn

bxaxaxa

bxaxaxa
bxaxaxa

=+++

=+++

=+++










Nonsingular Case 
!   If the coefficient matrix A is nonsingular, then it is 

invertible and we can solve Ax = b as follows: 

!   This solution is therefore unique.  Also, if b = 0, it follows 
that the unique solution to Ax = 0 is x = A-10 = 0.  

!   Thus if A is nonsingular, then the only solution to Ax = 0 is 
the trivial solution x = 0.  
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Example 1: Nonsingular Case (1 of 3) 

!   From a previous example, we know that the matrix A below 
is nonsingular with inverse as given. 

!   Using the definition of matrix multiplication, it follows that 
the only solution of Ax = 0 is x = 0: 
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Example 1: Nonsingular Case (2 of 3) 

!   Now let’s solve the nonhomogeneous linear system Ax = b 
below using A-1: 

!   This system of equations can be written as Ax = b, where 

!   Then 
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Example 1: Nonsingular Case (3 of 3) 

!   Alternatively, we could solve the nonhomogeneous linear 
system Ax = b below using row reduction. 

!   To do so, form the augmented matrix (A|b) and reduce, 
using elementary row operations.  
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Singular Case 
!   If the coefficient matrix A is singular, then A-1 does not 

exist, and either a solution to Ax = b does not exist, or there 
is more than one solution (not unique).  

!   Further, the homogeneous system Ax = 0 has more than one 
solution.  That is, in addition to the trivial solution x = 0, 
there are infinitely many nontrivial solutions. 

!   The nonhomogeneous case Ax = b has no solution unless 
(b, y) = 0, for all vectors y satisfying A*y = 0, where A* is 
the adjoint of A.   

!   In this case, Ax = b has solutions (infinitely many), each of 
the form x = x(0) + ξ, where x(0) is a particular solution of  
 Ax = b, and ξ is any solution of Ax = 0.   



Example 2: Singular Case (1 of 2) 

!   Solve the nonhomogeneous linear system Ax = b below using row 
reduction. Observe that the coefficients are nearly the same as in the 
previous example 

!   We will form the augmented matrix (A|b) and use some of the steps in 
Example 1 to transform the matrix more quickly 
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Example 2: Singular Case (2 of 2) 

!   From the previous slide, if            , there is no solution 
to the system of equations 

!   Requiring that     , assume, for example, that 

!   Then the reduced augmented matrix (A|b) becomes:  

!   It can be shown that the second term in x is a solution of the 
nonhomogeneous equation and that the first term is the most 
general solution of the homogeneous equation, letting   , 
where α is arbitrary 
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Linear Dependence and Independence 

!   A set of vectors x(1), x(2),…, x(n) is linearly dependent if 
there exists scalars c1, c2,…, cn, not all zero, such that 

!   If the only solution of 

 is c1= c2 = …= cn = 0, then x(1), x(2),…, x(n) is linearly 
independent.  
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Example 3: Linear Dependence (1 of 2) 

!   Determine whether the following vectors are linear 
dependent or linearly independent.  

!   We need to solve 

 or 
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Example 3: Linear Dependence (2 of 2) 

!   We can reduce the augmented matrix (A|b), as before. 

!   So, the vectors are linearly dependent: 
!   Alternatively, we could show that the following determinant is zero: 
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Linear Independence and Invertibility 

!   Consider the previous two examples: 
! The first matrix was known to be nonsingular, and its column vectors 

were linearly independent.  
! The second matrix was known to be singular, and its column vectors 

were linearly dependent. 

!   This is true in general: the columns (or rows) of A are linearly 
independent iff A is nonsingular iff A-1 exists. 

!   Also, A is nonsingular iff detA ≠ 0, hence columns (or rows) 
of A are linearly independent iff detA ≠ 0. 

!   Further, if C = AB, then det(C) = det(A)det(B).  Thus if the 
columns (or rows) of A and B are linearly independent, then 
the columns (or rows) of C are also.   



Linear Dependence & Vector Functions 

!   Now consider vector functions x(1)(t), x(2)(t),…, x(n)(t),  where 

!   As before, x(1)(t), x(2)(t),…, x(n)(t) is linearly dependent on I if 
there exists scalars c1, c2,…, cn, not all zero, such that 

!   Otherwise x(1)(t), x(2)(t),…, x(n)(t) is linearly independent on I 
 See text for more discussion on this.   
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Eigenvalues and Eigenvectors 
!   The eqn. Ax = y can be viewed as a linear transformation 

that maps (or transforms) x into a new vector y.   
!   Nonzero vectors x that transform into multiples of 

themselves are important in many applications.   
!   Thus we solve Ax = λx or equivalently, (A-λI)x = 0.   
!   This equation has a nonzero solution if we choose λ such 

that det(A-λI) = 0.   
!   Such values of λ are called eigenvalues of A, and the 

nonzero solutions x are called eigenvectors.   



Example 4: Eigenvalues (1 of 3) 

!   Find the eigenvalues and eigenvectors of the matrix A. 

!   Solution:  Choose λ such that det(A-λI) = 0, as follows. 
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Example 4: First Eigenvector (2 of 3) 

!   To find the eigenvectors of the matrix A, we need to solve 
(A-λI)x = 0 for λ = 2 and λ = -1.  

!   Eigenvector for λ = 2:  Solve 
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Example 4: Second Eigenvector (3 of 3) 

!   Eigenvector for λ = -1:  Solve 

  
 

  and this implies that  .  So 
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Normalized Eigenvectors 

!   From the previous example, we see that eigenvectors are 
determined up to a nonzero multiplicative constant.   

!   If this constant is specified in some particular way, then the 
eigenvector is said to be normalized.  

!   For example, eigenvectors are sometimes normalized by 
choosing the constant so that ||x|| = (x, x)½ = 1.   



Algebraic and Geometric Multiplicity 

!   In finding the eigenvalues λ of an n x n matrix A, we solve 
det(A-λI) = 0.   

!   Since this involves finding the determinant of an n x n 
matrix, the problem reduces to finding roots of an nth 
degree polynomial.   

!   Denote these roots, or eigenvalues, by  λ1, λ2, …, λn.   
!   If an eigenvalue is repeated m times, then its algebraic 

multiplicity is m.   
!   Each eigenvalue has at least one eigenvector, and a 

eigenvalue of algebraic multiplicity m may have q linearly 
independent eigevectors, 1 ≤ q ≤ m, and q is called the 
geometric multiplicity of the eigenvalue.  



Eigenvectors and Linear Independence 

!   If an eigenvalue λ has algebraic multiplicity 1, then it is said 
to be simple, and the geometric multiplicity is 1 also.  

!   If each eigenvalue of an n x n matrix A is simple, then A 
has n distinct eigenvalues.  It can be shown that the n 
eigenvectors corresponding to these eigenvalues are linearly 
independent.  

!   If an eigenvalue has one or more repeated eigenvalues, then 
there may be fewer than n linearly independent eigenvectors 
since for each repeated eigenvalue, we may have q < m.   
This may lead to complications in solving systems of 
differential equations.  



Example 5: Eigenvalues (1 of 5) 

!   Find the eigenvalues and eigenvectors of the matrix A. 

!   Solution:  Choose λ such that det(A-λI) = 0, as follows. 
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Example 5: First Eigenvector (2 of 5) 

!   Eigenvector for λ = 2:  Solve (A-λI)x = 0, as follows. 
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Example 5:  2nd and 3rd Eigenvectors (3 of 5) 

!   Eigenvector for λ = -1:  Solve (A-λI)x = 0, as follows. 
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Example 5: Eigenvectors of A  (4 of 5) 

!   Thus three eigenvectors of A are 

 where x(2), x(3) correspond to the double eigenvalue λ = - 1. 
!   It can be shown that x(1), x(2), x(3) are linearly independent.   
!   Hence A is a 3 x 3 symmetric matrix (A = AT ) with 3 real 

eigenvalues and 3 linearly independent eigenvectors. 
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Example 5: Eigenvectors of A  (5 of 5) 

!   Note that we could have we had chosen 

!   Then the eigenvectors are orthogonal, since 

!   Thus A is a 3 x 3 symmetric matrix with 3 real eigenvalues 
and 3 linearly independent orthogonal eigenvectors.  
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Hermitian Matrices 

!   A self-adjoint, or Hermitian matrix, satisfies A = A*, 
where we recall that A* = AT .   

!   Thus for a Hermitian matrix,  aij = aji.  
!   Note that if A has real entries and is symmetric (see last 

example), then A is Hermitian.   
!   An n x n Hermitian matrix A has the following properties: 

! All eigenvalues of A are real. 
! There exists a full set of n linearly independent eigenvectors of A. 
! If x(1) and x(2) are eigenvectors that correspond to different 

eigenvalues of A, then x(1) and x(2) are orthogonal.  
! Corresponding to an eigenvalue of algebraic multiplicity m, it is 

possible to choose m mutually orthogonal eigenvectors, and hence A 
has a full set of n linearly independent orthogonal eigenvectors. 


