Boyce/DiPrima 9" ed, Ch 7.5: Homogeneous
Linear Systems with Constant Coefficients

Elementary Differential Equations and Boundary Value Problems, 9 edition, by William E. Boyce and Richard C. DiPrima, ©2009 by John Wlley & Sons, Inc.

= We cons1der here a homogeneous system of n first order hnear
equations with constant, real coefficients:

4

/

4
X =a.x +a,x,+...+a,x
| > This system can be written as X' = Ax, where

[ x,(2) ) (a, a, - a,)
e L P

\xm (t)/ \anl a2 /




Equlhbrlum Solutlons

« Note that if n = 1 then the system reduces to
x=ax = x(t)=e"
* Recall that x = 0 1s the only equilibrium solution 1f a = 0.

* Further, x = 0 1s an asymptotically stable solution if a <0,
since other solutions approach x = 0 in this case.

# Also, x = 0 1s an unstable solution if a > 0, since other
solutions depart from x = 0 in this case.

x

For n > 1, equilibrium solutions are similarly found by
solving Ax = 0. We assume detA = 0, so that x = 0 1s the
only solution. Determining whether x = 0 1s asymptotically
stable or unstable is an important question here as well.




Phase Plane

 When 1 = 2 then the system reduces to
X, = a, X, +a,x,

!
Xy =dy X +dyX,

A%

This case can be visualized 1n the x,x,-plane, which is called
the phase plane.

* In the phase plane, a direction field can be obtained by
evaluating Ax at many points and plotting the resulting
vectors, which will be tangent to solution vectors.

* A plot that shows representative solution trajectories 1s
called a phase portrait.

» Examples of phase planes, directions fields and phase
portraits will be given later 1n this section.




Solvmg Homogeneous System

« To construct a general solution to x' = Ax assume a solutlon
of the form x = E¢’’, where the exponent » and the constant
vector & are to be determined.

Substituting x = E¢’* into X' = AX, we obtain

x

e = Ake” < E=Af < (A-rIE=0

* Thus to solve the homogeneous system of differential
equations x' = Ax, we must find the eigenvalues and
eigenvectors of A.

% Therefore x = Ee¢'” 1s a solution of X' = Ax provided that 7 is
an eigenvalue and § is an eigenvector of the coefficient
matrix A.
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Example 5% Elgenvalues (2 0f9)

% Our solution has the form x = E_,e’”" where 7 and E, are found
by solving

e o B g
[ s )lo
* Recalling that this 1s an eigenvalue problem, we determine »
by solving det(A-r1) = 0:

R =(1—r)2—4=r2—2r—3=(r—3)(r+1)

* Thusr, =3 and r, = -1.




Example 2 Flrst Elgenvector (3 of 9)

o Elgenvector for L= 3: Solve

el e 1)(§J=(°J
4 1-3)& ) (0 4 =25 ) \0
by row reducing the augmented matrix:

RORES Y R R AR T NS PR 2 Ry
NI, IR 1 R AR, B SRR 0 0 05, =0

1/2 1/2 1
— g = ( §2) c( ), ¢ arbitrary — choose & = ( )
& 1 2




Example 2 Second Elgenvector (4 of 9)

o Elgenvector for 5= 1: Solve

(A—rl)§=0© 1+1 1\( &, $ 0 o1 S A, 0
4 1+1\g ) o 4 2)lg ] o
by row reducing the augmented matrix:

FEEND 1 1/2 0 RGN RN RS T VR
I 1 I N R R I S 0E, =0

-1/2 -1/2 1
— £ = ( 52) B c( ), c arbitrary — choose & = ( )
&, 1 -2




Example 5% General Solutlon 5 0f9)

% The correspondmg solutions x = E,e”‘ of X' = Ax are

x'V(¢) = (2)63’, x?(¢) = (_ 21)e_

% The Wronskian of these two solutions is

[ M L@ ]t)

# Thus x( and x® are fundamental solutions, and the general
solution of x' = Ax is

x(1) = ¢, xV(#) + c,x?(¢)

1 3t 1 —t
= 5 PR 0 e

—t
e

. = —4e™ = ()
2e - 2e




Example l: Phase Plane for x(l) (6 of 9)

= To Vlsuahze solut10n con51der ﬁrst X = ¢ x(l)

X 1
V@) =" |=¢| l&¥ <= x =ce’, x,=2¢ce"
1 1 1 2 1
X, 2

» Now
3 3 ¢ TR T
PRS- S AT NP e RIERE: g AR SRRy R R
G 2€

# Thus x(D lies along the straight line x, = 2x,, which is the line
through origin in direction of first eigenvector )

* [f solution 1s trajectory of particle, with position given by
(x;, X,), then it 1s in Q1 when ¢, > 0, and in Q3 when ¢, <0.

* In either case, particle moves away from origin as ¢ increases.




Example l: Phase Plane for x(z) (7 of 9)

Next con31der X czx(z)

1
x? () = ( 1) b 02( )e" SRS e = et
X, -2

# Then x® lies along the straight line x, = -2x;, which is the
line through origin in direction of 2nd eigenvector £

* [f solution 1s trajectory of particle, with position given by
(x;, X,), then 1t 1s in Q4 when ¢, > 0, and 1n Q2 when ¢, <O0.

* In either case, particle moves towards origin as ¢ increases.




Example 1:
Phase Plane for General Solut10n (8 of 9)

% The general solution is x = & X(l) 3 czx(z)

1 3t 1 ~t
X(?) = 01(2)3 + cz(_ 2)8

# Ast— o, ¢,x1) is dominant and ¢,x® becomes negligible.
Thus, for ¢; = 0, all solutions asymptotically approach the
line x, = 2x, as t — .

* Similarly, for ¢, = 0, all solutions asymptotically approach
the line x, = -2x, as t — - .

* The origin 1s a saddle point,

and 1s unstable. See graph.




Example 1:
Tlme Plots for General Solutlon (9 of 9)

% The general solution is x = & x(U - czx(z)

1 1 t 2 ¥
x(t)=c| |’ +c, e’ < %) = le T
3 -2 x, (1) 2¢,e’ —2¢c,e”

* As an alternative to phase plane plots, we can graph x, or x,
as a function of z. A few plots of x, are given below.

A

Note that when ¢, = 0, x,(¥) = c,e’ — 0 as t — oo,
Otherwise, x,(¢) = ¢, + ¢,e’ grows unbounded as ¢ — oo,

» Qraphs of x, are similarly obtained.

J




Example 2 Dlrectlon F1e1d (1 of 9)

% Consider the homogeneous equatlon x' = Ax below.

X = S \/EX
Vo)

* A direction field for this system is given below.
* Substituting x = e’ in for x, and rewriting system as
(A-rI)E = 0, we obtain
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Example 2 Elgenvalues (2 0f9)

% Our solution has the form x = E_,e’”" where  and E, are found
by solving

—-3-r \/5 §1 S 0
\/5 —2-r §1 0
* Recalling that this 1s an eigenvalue problem, we determine »
by solving det(A-r1) = 0:

-3-r JE
JE —2-r

# Thus r; =-1 and r, = -4.

=(-3-r)(2-r)-2=r"+5r+4=(r+1)(r+4)




Example A Flrst Elgenvector (3 of 9)

o Elgenvector for L= 1: Solve

wtieb e [ S0 (5 e

by row reducing the augmented matrix:

-2 N2 0) (1 =272 0)_(1 -~2/2 0
(ﬁ 2 o) (ﬁ T 0] (o 0 o]

) (ﬁ/zz] — choose & = (\El)




Example 2: Second Eigenvector (4 of 9)

» Eigenvector for r, = -4: Solve

3 =344 V2)(E)_(0) [ 1 V2)(&) (O
St RN e Y
by row reducing the augmented matrix:

( ] O)%(l V2 o)%g(%(—ﬁ&z)

2R R O DRSOk E,

— choose &% = (_ \/E)

1




Example 2 General Solutlon (5 0f9)

% The correspondmg solutions x = E,e”‘ of X' = Ax are

(1) o 1 —t (2) ) _\/5 -4t
X (t)—(\/z)e X (t)—( l]e

% The Wronskian of these two solutions is

—t -4t
-] o T e e

# Thus x( and x® are fundamental solutions, and the general
solution of x'= Ax 1s

x(t) = ¢, x" (¢) + c,x(¢)

ol e



Example 33 Phase Plane for x(l) (6 of 9)

= To V1suahze solutlon con31der ﬁrst X = ¢ x(l)

X(l)(z‘)=(xl)=cl(\/§1)e" = xX=ce’, x, =2ce"

* Now
NI A X
X = G =N 2C e e e e e e s = D
¢ V2

# Thus x(D lies along the straight line x, = 2”x,, which is the
line through origin in direction of first eigenvector

* [f solution 1s trajectory of particle, with position given by
(xq, X,), then it 1s in Q1 when ¢, > 0, and 1n Q3 when ¢, <0.

* In either case, particle moves towards origin as ¢ increases.




Example 33 Phase Plane for x(z) (7 of 9)

Next con31der X czx(z)

—/2
X(Z)(f) 8 ( 1) A Cz( f)e"” o xi= —\/5026_‘”, X, = Cze—4t
%)

1

Then x® lies along the straight line x, = -2”x,, which is the
line through origin in direction of 2nd eigenvector £

x

* [f solution 1s trajectory of particle, with position given by
(xy, X,), then 1t 1s in Q4 when ¢, > 0, and 1n Q2 when ¢, <0.

* In either case, particle moves towards origin as ¢ increases.




Example 2:
Phase Plane for General Solut10n (8 of 9)

% The general solution is x = & x(U - czx(z)

(1) ¥ I ~1 (2) s _\/5
X (t)—(\/z)e X (t)—( le

As t — oo, ¢,;x() is dominant and ¢,x® becomes negligible.
Thus, for ¢, = 0, all solutions asymptotically approach
origin along the line x, = 2”x, as t — .

44

%

Similarly, all solutions are unbounded as ¢t — - .

X

* The origin 1s a node, and 1s
asymptotically stable.




Example 2:
T1me Plots for General Solutlon (9 of 9)

% The general solution is x = & X(l) 3 czx(z)

x(7) =c : e’ +c _\/5 et = xl(t) A cle_’ —\/§C2€_4t
1 \/E 2 1 xz(z‘) \/Ecle-f +C2€_4t

* As an alternative to phase plane plots, we can graph x, or x,
as a function of z. A few plots of x, are given below.

N

0.5 ==

» Qraphs of x, are similarly obtained.

\\




2 X 2 Gase:
Real Eigenvalues Saddle Points and Nodes

% The prev10us tWo examples demonstrate the two main cases
for a 2 x 2 real system with real and different eigenvalues:

¢ Both eigenvalues have opposite signs, in which case origin is a
saddle point and is unstable.

¢ Both eigenvalues have the same sign, in which case origin is a node,
and 1s asymptotically stable if the eigenvalues are negative and
unstable if the eigenvalues are positive.




Eigenvalues, Eigenvectors
and Fundamental Solutlons

iit'

In general for an 7 x n real linear system x' = Ax:
¢ All eigenvalues are real and different from each other.
¢ Some eigenvalues occur in complex conjugate pairs.
¢ Some eigenvalues are repeated.

If eigenvalues r,..., r, are real & different, then there are n
corresponding linearly independent eigenvectors 1), ..., E),
The associated solutions of x' = Ax are

X(l)(l‘) B é(l)em, = .,X(n)(l‘) o g(n)ernt

Using Wronskian, it can be shown that these solutions are
linearly independent, and hence form a fundamental set of
solutions. Thus general solution 1s

x =¢EVe™ N 4ot Me™



Hermitian Case: Eigenvalues, Eigenvectors &
Fundamental Solutlons

b1

% If A is an 7 x n Hermitian matrix (real and symmetr1c) then
all eigenvalues r,..., r, are real, although some may repeat.

A

In any case, there are n corresponding linearly independent
and orthogonal eigenvectors £, ..., E®. The associated
solutions of x' = Ax are

X(l)(l‘) A\ g(l)eﬁf, N .,X(n)(l‘) R\ g;(n)ernf

and form a fundamental set of solutions.




Example 3: Herm1t1an Matnx (1 of 3)

% Consider the homogeneous equatlon x' = Ax below.

AN B
x=[1 0 1]|x
1 1 O

/

* The eigenvalues were found previously in Ch 7.3, and were:
1"1:2,7"2:-1 andr3:'1.
# Corresponding eigenvectors:

1 1 0

§(1)= 1,§(2)= 0 ’;;(3)= 1
-1 -1

ok




Example L General Solutlon (2 of 3)

S The fundamental solut10ns are
1 | 0
xV={1]le”, xP =] 0le”,x® =| 1l
1 -1 -1

with general solution

1 1 0
x=c|lle” +c,| Ole" +c,| 1le”
1 —1 -1




Example 3: General Solution Behavior (3 of 3)

# The general solution is x = ¢;x!) + ¢,x?) + ¢,x):

1 1 0
x=cl|lle” +c,| Ole”" +¢c,| 1le”
1 —1 —1

% Ast — oo, ¢;x(V) is dominant and ¢,x® , ¢;x®) become
negligible.

x Thus, for ¢; = 0, all solns x become unbounded as ¢ — o,
while for ¢, =0, all solns x = 0 as t — .

* The 1nitial points that cause ¢, = 0 are those that lie in plane
determined by E® and E®). Thus solutions that start in this
plane approach origin as ¢ — o,




Complex Elgenvalues and Fundamental Solns

« If some of the elgenvalues rl, _ occur in complex
conjugate pairs, but otherwme are dlfferent, then there are
still n corresponding linearly independent solutions

x (1) = é(l)em, AN X(n)(l‘) . g(n)ernf :

which form a fundamental set of solutions. Some may be
complex-valued, but real-valued solutions may be derived
from them. This situation will be examined in Ch 7.6.

» If the coefficient matrix A 1s complex, then complex
eigenvalues need not occur in conjugate pairs, but solutions
will still have the above form (if the eigenvalues are
distinct) and these solutions may be complex-valued.



Repeated Eigenvalues and Fundamental Solns

« If some of the elgenvalues rl, are repeated then there
may not be n corresponding hnearly independent solutions of

the form
X(l)(l‘) A g(l)e'ﬁf, o .,X(n)(l‘) o g;(n)ernf

* In order to obtain a fundamental set of solutions, it may be
necessary to seek additional solutions of another form.

* This situation 1s analogous to that for an nth order linear
equation with constant coefficients, in which case a repeated
root gave rise solutions of the form

rt 2rt

e’ te" ,te

This case of repeated eigenvalues 1s examined in Section 7.8.




