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!   We consider here a homogeneous system of n first order linear 
equations with constant, real coefficients: 

!   This system can be written as x' = Ax, where 



Equilibrium Solutions 

!   Note that if n = 1, then the system reduces to 

!   Recall that x = 0 is the only equilibrium solution if a ≠ 0.  
!   Further, x = 0 is an asymptotically stable solution if a < 0, 

since other solutions approach x = 0 in this case.   
!   Also, x = 0 is an unstable solution if a > 0, since other 

solutions depart from x = 0 in this case.  
!   For n > 1, equilibrium solutions are similarly found by 

solving Ax = 0.  We assume detA ≠ 0, so that x = 0 is the 
only solution.  Determining whether x = 0 is asymptotically 
stable or unstable is an important question here as well.  



Phase Plane 

!   When n = 2, then the system reduces to 

!   This case can be visualized in the x1x2-plane, which is called 
the phase plane.   

!   In the phase plane, a direction field can be obtained by 
evaluating Ax at many points and plotting the resulting 
vectors, which will be tangent to solution vectors.  

!   A plot that shows representative solution trajectories is 
called a phase portrait.   

!   Examples of phase planes, directions fields and phase 
portraits will be given later in this section.   



Solving Homogeneous System 

!   To construct a general solution to x' = Ax, assume a solution 
of the form x = ξert, where the exponent r and the constant 
vector ξ are to be determined.  

!   Substituting x = ξert into x' = Ax, we obtain 

!   Thus to solve the homogeneous system of differential 
equations x' = Ax, we must find the eigenvalues and 
eigenvectors of  A. 

!   Therefore x = ξert is a solution of x' = Ax provided that r is 
an eigenvalue and ξ is an eigenvector of the coefficient 
matrix A. 



Example 1:  Direction Field   (1 of 9) 

!   Consider the homogeneous equation x' = Ax below. 

!   A direction field for this system is given below. 
!   Substituting x = ξert in for x, and rewriting system as  

 (A-rI)ξ = 0, we obtain 



Example 1:  Eigenvalues (2 of 9) 

!   Our solution has the form x = ξert, where r and ξ are found 
by solving  

!   Recalling that this is an eigenvalue problem, we determine r 
by solving det(A-rI) = 0:   

!   Thus r1 = 3 and r2 = -1.    



Example 1: First Eigenvector (3 of 9) 

!   Eigenvector for r1 = 3:  Solve 

 by row reducing the augmented matrix: 



Example 1: Second Eigenvector (4 of 9) 

!   Eigenvector for r2 = -1:  Solve 

 by row reducing the augmented matrix: 



Example 1: General Solution (5 of 9) 

!   The corresponding solutions x = ξert of x' = Ax are 

!   The Wronskian of these two solutions is 

!   Thus x(1) and x(2) are fundamental solutions, and the general 
solution of x' = Ax is 



Example 1: Phase Plane for x(1)   (6 of 9) 

!   To visualize solution, consider first x = c1x(1):  

!   Now  

!   Thus x(1) lies along the straight line x2 = 2x1, which is the line 
through origin in direction of first eigenvector ξ(1)  

!   If solution is trajectory of particle, with position given by  
 (x1, x2), then it is in Q1 when c1 > 0, and in Q3 when c1 < 0.   

!   In either case, particle moves away from origin as t increases.   



Example 1: Phase Plane for x(2)   (7 of 9) 

!   Next, consider x = c2x(2):  

!   Then x(2) lies along the straight line x2 = -2x1, which is the 
line through origin in direction of 2nd eigenvector ξ(2)  

!   If solution is trajectory of particle, with position given by 
(x1, x2), then it is in Q4 when c2 > 0, and in Q2 when c2 < 0.   

!   In either case, particle moves towards origin as t increases.   



Example 1:  
Phase Plane for General Solution   (8 of 9) 

!   The general solution is x = c1x(1) + c2x(2):    

!   As t → ∞, c1x(1) is dominant and c2x(2) becomes negligible. 
Thus, for c1 ≠ 0, all solutions asymptotically approach the 
line x2 = 2x1 as t → ∞.  

!   Similarly, for c2 ≠ 0, all solutions asymptotically approach 
the line x2 = -2x1 as t → - ∞.  

!   The origin is a saddle point, 
 and is unstable.  See graph. 



Example 1:  
Time Plots for General Solution   (9 of 9) 

!   The general solution is x = c1x(1) + c2x(2):    

!   As an alternative to phase plane plots, we can graph x1 or x2 
as a function of t.   A few plots of x1 are given below.   

!   Note that when c1 = 0, x1(t) = c2e-t → 0 as t → ∞. 
Otherwise, x1(t) = c1e3t + c2e-t grows unbounded as t → ∞.  

!   Graphs of x2 are similarly obtained. 



Example 2:  Direction Field   (1 of 9) 

!   Consider the homogeneous equation x' = Ax below. 

!   A direction field for this system is given below. 
!   Substituting x = ξert in for x, and rewriting system as  

 (A-rI)ξ = 0, we obtain 



Example 2:  Eigenvalues (2 of 9) 

!   Our solution has the form x = ξert, where r and ξ are found 
by solving  

!   Recalling that this is an eigenvalue problem, we determine r 
by solving det(A-rI) = 0:   

!   Thus r1 = -1 and r2 = -4.    



Example 2: First Eigenvector (3 of 9) 

!   Eigenvector for r1 = -1:  Solve 

 by row reducing the augmented matrix: 



Example 2: Second Eigenvector (4 of 9) 

!   Eigenvector for r2 = -4:  Solve 

 by row reducing the augmented matrix: 



Example 2: General Solution (5 of 9) 

!   The corresponding solutions x = ξert of x' = Ax are 

!   The Wronskian of these two solutions is 

!   Thus x(1) and x(2) are fundamental solutions, and the general 
solution of x' = Ax is 



Example 2: Phase Plane for x(1)   (6 of 9) 

!   To visualize solution, consider first x = c1x(1):  

!   Now  

!   Thus x(1) lies along the straight line x2 = 2½ x1, which is the 
line through origin in direction of first eigenvector ξ(1)  

!   If solution is trajectory of particle, with position given by 
(x1, x2), then it is in Q1 when c1 > 0, and in Q3 when c1 < 0.   

!   In either case, particle moves towards origin as t increases.   



Example 2: Phase Plane for x(2)   (7 of 9) 

!   Next, consider x = c2x(2):  

!   Then x(2) lies along the straight line x2 = -2½ x1, which is the 
line through origin in direction of 2nd eigenvector ξ(2)  

!   If solution is trajectory of particle, with position given by  
 (x1, x2), then it is in Q4 when c2 > 0, and in Q2 when c2 < 0.   

!   In either case, particle moves towards origin as t increases.   



Example 2:  
Phase Plane for General Solution   (8 of 9) 

!   The general solution is x = c1x(1) + c2x(2):    

!   As t → ∞, c1x(1) is dominant and c2x(2) becomes negligible. 
Thus, for c1 ≠ 0, all solutions asymptotically approach 
origin along the line x2 = 2½ x1 as t → ∞.  

!   Similarly, all solutions are unbounded as t → - ∞.  
!   The origin is a node, and is  

asymptotically stable.   



Example 2:  
Time Plots for General Solution   (9 of 9) 

!   The general solution is x = c1x(1) + c2x(2):    

!   As an alternative to phase plane plots, we can graph x1 or x2 
as a function of t.   A few plots of x1 are given below.   

!   Graphs of x2 are similarly obtained. 



2 x 2 Case:   
Real Eigenvalues, Saddle Points and Nodes 

!   The previous two examples demonstrate the two main cases 
for a 2 x 2 real system with real and different eigenvalues: 
!   Both eigenvalues have opposite signs, in which case origin is a 

saddle point and is unstable. 
!   Both eigenvalues have the same sign, in which case origin is a node, 

and is asymptotically stable if the eigenvalues are negative and 
unstable if the eigenvalues are positive. 



Eigenvalues, Eigenvectors  
and Fundamental Solutions 

!   In general, for an n x n real linear system x' = Ax: 
!   All eigenvalues are real and different from each other. 
!   Some eigenvalues occur in complex conjugate pairs. 
!   Some eigenvalues are repeated. 

!   If eigenvalues r1,…, rn are real & different, then there are n 
corresponding linearly independent eigenvectors ξ(1),…, ξ(n).  
The associated solutions of x' = Ax are 

!   Using Wronskian, it can be shown that these solutions are 
linearly independent, and hence form a fundamental set of 
solutions.  Thus general solution is  



Hermitian Case: Eigenvalues, Eigenvectors & 
Fundamental Solutions 

!   If A is an n x n Hermitian matrix (real and symmetric), then 
all eigenvalues r1,…, rn are real, although some may repeat.   

!   In any case, there are n corresponding linearly independent 
and orthogonal eigenvectors ξ(1),…, ξ(n).  The associated 
solutions of x' = Ax are 

 and form a fundamental set of solutions.   



Example 3:  Hermitian Matrix   (1 of 3) 

!   Consider the homogeneous equation x' = Ax below. 

!   The eigenvalues were found previously in Ch 7.3, and were: 
  r1 = 2, r2 = -1 and r3 = -1.   

!   Corresponding eigenvectors:  



Example 3:  General Solution (2 of 3) 

!   The fundamental solutions are  

 with general solution   



Example 3: General Solution Behavior  (3 of 3) 

!   The general solution is x = c1x(1) + c2x(2) + c3x(3):  

!   As t → ∞, c1x(1) is dominant and c2x(2) , c3x(3) become 
negligible.  

!   Thus, for c1 ≠ 0, all solns x become unbounded as t → ∞, 
 while for  c1 = 0, all solns x → 0 as t → ∞. 

!   The initial points that cause c1 = 0 are those that lie in plane 
determined by ξ(2) and ξ(3).  Thus solutions that start in this 
plane approach origin as  t → ∞. 



Complex Eigenvalues and Fundamental Solns  
!   If some of the eigenvalues r1,…, rn occur in complex 

conjugate pairs, but otherwise are different, then there are 
still n corresponding linearly independent solutions 

 which form a fundamental set of solutions.  Some may be 
complex-valued, but real-valued solutions may be derived 
from them.  This situation will be examined in Ch 7.6. 

!   If the coefficient matrix A is complex, then complex 
eigenvalues need not occur in conjugate pairs, but solutions 
will still have the above form (if the eigenvalues are 
distinct) and these solutions may be complex-valued.  



Repeated Eigenvalues and Fundamental Solns  
!   If some of the eigenvalues r1,…, rn are repeated, then there 

may not be n corresponding linearly independent solutions of 
the form 

!   In order to obtain a fundamental set of solutions, it may be 
necessary to seek additional solutions of another form.  

!   This situation is analogous to that for an nth order linear 
equation with constant coefficients, in which case a repeated 
root gave rise solutions of the form  

 This case of repeated eigenvalues is examined in Section 7.8.  


