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Abstract

Spatial intensity variations caused by illumination
changes have been a challenge for image segmentation and
many other computer vision tasks. This paper presents a
novel method for image segmentation with simultaneous es-
timation of illumination and reflectance images. The pro-
posed method is based on the composition of an observed
scene image with an illumination component and a re-
flectance component, known as intrinsic images. We define
an energy functional in terms of an illumination image, the
membership functions of the regions, and the correspond-
ing reflectance constants of the regions in the scene. This
energy is convex in each of its variables. By minimizing the
energy, image segmentation result is obtained in the form
of the membership functions of the regions. The illumina-
tion and reflectance components of the observed image are
estimated simultaneously as the result of energy minimiza-
tion. With illumination taken into account, the proposed
method is able to segment images with non-uniform inten-
sities caused by spatial variations in illumination. Com-
parisons with the state-of-the-art piecewise smooth model
demonstrate the superior performance of our method.

1. Introduction

An observed image of a scene is a composition of illumi-
nation and reflectance components, which have been termed
as intrinsic images in [1]. The reflectance component char-
acterizes a unique physical property of the object surfaces
in the scene – the albedo of the object surfaces. The illu-
mination component depends on the light direction and the
orientation of the object surfaces, and can be used to infer
the geometry of the objects being viewed. However, spatial
variations in illumination cause changes of the intensities in

the observed images, which has been a challenge for many
computer vision tasks, such as segmentation, tracking, and
object recognition.

In image segmentation, a considerable difficulty arises
from spatial variations in illumination. The observed im-
age intensities in a single object may not be uniform due to
spatial variations in illumination. In this case, it is difficult
to define a region descriptor in region-based methods for
image segmentation. Therefore, many widely used region-
based methods [15, 5] rely on the uniformity of the inten-
sities in the regions to be segmented, as it is easy to model
the intensities within the regions of interest and to define
a region descriptor. These methods are not applicable to
real-world images with non-uniform intensities caused by
spatial variations in illumination.

The well-known Mumford-Shah model in [11] has pro-
vided a theoretical framework of image segmentation,
which can be applied to a wider range of images, includ-
ing those with non-uniform intensities. The Mumford-Shah
model assumes that an image can be approximated by a
piecewise smooth function. Based on this assumption, the
Mumford-Shah model seeks a contour and a number of
smooth functions that approximate the image intensities in
disjoint regions separated by the contour. The smoothness
of these functions is ensured by imposing a smoothing term
in the Mumford-Shah model, which leads to a set of partial
differential equations that have to be solved at each iteration
for the evolution of the contour. Therefore, the computa-
tion in these methods is rather expensive, which limits their
practical applications. In addition, due to the non-convexity
of the underlying energy functionals, the corresponding en-
ergy minimization algorithms may converge to false local
minima.

The piecewise smooth characterization of images in the
Mumford-Shah model is too general for real images. A
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more specific characterization of real images would pro-
vide more useful information, which can be taken into ac-
count in image segmentation. In fact, there is a more spe-
cific characterization of real images based on the theory of
lightness perception: an observed image I , its illumination
image component S, and reflectance image component R
are related by the following multiplicative model:

I = R · S. (1)

Furthermore, the illumination image S is assumed to be
smooth [6, 8, 2]. The reflectance image R can be approxi-
mated by a piecewise constant map, as it describes a phys-
ical property of the object surfaces in the scene. Therefore,
the observed image can be approximated by the product of
a smooth function and a piecewise constant function.

In this paper, we propose a novel energy minimization
method for image segmentation with simultaneous estima-
tion of illumination and reflectance images, based on the
above image composition model in Eq. (1) and the proper-
ties of the illumination and reflectance images. We define
an energy functional in terms of an illumination image, the
membership functions of the regions, and the corresponding
reflectance constants of the regions in the scene. By mini-
mizing the energy, image segmentation result is obtained in
the form of the membership functions of the regions. Mean-
while, the illumination and reflectance components of the
observed image are estimated simultaneously as the result
of energy minimization.

The proposed method is related to the techniques for illu-
mination and reflectance estimation (IRE) from an observed
image, such as those in [7, 14, 9, 12]. However, our method
is fundamentally different from these methods for illumi-
nation and reflectance estimation. Our method is mainly
targeted for image segmentation. In the formulation of our
method, we introduce membership functions of the object
surfaces in the image, which directly represent an image
segmentation result. The existing methods for IRE do not
provide image segmentation results.

2. Problem Formulation Based on Intrinsic Im-
age Composition

For theoretical completeness, we slightly extend the im-
age model (1) with additive noise as below:

I = R · S + n (2)

where n is assumed to be zero-mean Gaussian noise. The
reflectance image R is approximately a constant ri in a
region Ωi, which corresponds to an object surface in the
scene. The property of the illumination image S and the
reflectance image R mentioned in Section 1 can be made
more specific as below:

(A1) R(x) ≈ ri for x ∈ Ωi for i = 1, · · · , N , with Ωi ∩
Ωj = ∅ for any i �= j and ∪N

i=1Ωi = Ω.

(A2) The illumination image S is smooth.

The above disjoint regions Ω1, · · · ,ΩN form a partition of
the image domain Ω. The goal of image segmentation is to
determine such a partition.

From the above image model (2), we propose to seek a
piecewise constant map R̂ and a smooth function Ŝ to esti-
mate the intrinsic images R and S, respectively. In general,
a piecewise constant map R can be expressed as a linear
combination:

R =
N∑

i=1

riχΩi
(3)

where χΩi
is the characteristic function of the region Ωi.

Each characteristic function χΩi
is a membership func-

tion of the region Ωi. Thus, estimation of the reflectance
image R from an observed image I can be achieved by
seeking membership functions ui associated with the re-
gions Ωi and the corresponding reflectance constants ri, for
i = 1, · · · , N . Thus, image segmentation result is given by
the obtained membership functions.

For convenience, the membership functions u1, · · · , uN

and the constants r1, · · · , rN are denoted by a vector val-
ued membership function U = (u1, · · · , uN ), and a vector
r = (r1, · · · , rN ), respectively. Thus, the problem of es-
timating the intrinsic images R and S can be formulated
as one that seeks optimal vector membership function U ,
vector r, and a smooth function S according to an optimal-
ity criterion. We will propose a variational formulation, in
which the optimal U , r, and S are obtained by minimizing
an energy functional F(U, r, S).

3. Energy Formulation

3.1. Statistical Property of Local Intensities

The variation in appearance caused by the illumination
changes has been a challenging problem for visual tasks,
such as segmentation. However, the smoothness of illumi-
nation image, along with the piecewise constant property of
the reflectance image, implies a useful property of the ob-
served image intensities in local area, which will be used in
the formulation of the proposed energy minimization frame-
work for segmentation with simultaneous illumination and
reflectance estimation. In fact, the observed image inten-
sities in a small local area follow a simple distribution as
described below.

We consider a circular neighborhood of each point x ∈
Ω, defined byOx � {y : |y−x| ≤ ρ}, where ρ is the radius
of the neighborhood. The partition {Ωi}N

i=1 of the entire do-
main Ω induces a partition of the neighborhood Ox into N
subsetsOx∩Ωi, which form a partition ofOx. For a smooth
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function S, the values S(y) for all y in the circular neigh-
borhood Ox can be well approximated by S(x). Therefore,
the intensities S(y)R(y) in each subregion Ox ∩ Ωi are
approximately the constant S(x)ri. Thus, we have the fol-
lowing approximation

S(y)R(y) ≈ S(x)ri for y ∈ Ox ∩ Ωi (4)

From the image model (2), we have

I(y) ≈ S(x)ri + n(y) for y ∈ Ox ∩ Ωi

where n(y) is additive zero-mean Gaussian noise.
The above arguments show that the intensities within the

neighborhood Ox are samples from N Gaussian distribu-
tions with distinct means S(x)ri, i = 1, · · · , N . In the
other word, the intensities in the neighborhood Ox form N
clusters:

{I(y) : y ∈ Ox ∩ Ωi},
each with a cluster center mi ≈ S(x)ri. As shown above,
the cluster center mi can be approximated by the product
of a region dependent reflectance constants ri and an illu-
mination factor S(x), which approximates the illumination
within the neighborhood Ox. This property of local inten-
sities is fully exploited in the proposed method for image
segmentation and estimation of intrinsic images.

3.2. Clustering Criterion for Local Intensities

In view of the above clustering characterization of lo-
cal intensities in terms of illumination and reflectance, we
introduce a clustering-based approach for image segmen-
tation with simultaneous illumination and reflectance esti-
mation. Lets first review a basic clustering criterion that
has been used to derive the well known fuzzy C-means
and K-means algorithms. A standard clustering algorithm
seeks the membership functions ui and the cluster centers
ci, such that the following clustering criterion function is
minimized:

JFCM =
∫ N∑

i=1

uq
i (x)|I(x)− ci|2dx (5)

where q ≥ 1 is the fuzzifier, I is the input image, ui(x)
is the membership value at point x for class i such that∑N

i ui(x) = 1, and ci is the cluster center of class i. This
clustering criterion has been used to derive a simple yet
powerful algorithm to classify data that consists of N sepa-
rable clusters with distinct cluster centers and determine the
cluster centers at the same time. The corresponding mini-
mization process is the well-known fuzzy C-means (FCM)
algorithm. As a special case when the fuzzifier q is 1, the
minimization of the above clustering criterion is achieved
by the K-means algorithm. The above FCM clustering cri-
terion is in general not valid for image I with a spatially

varying illumination image component S. However, from
the statistics of local intensities in Section 3.1, the above
standard clustering criterion can be applied for local inten-
sity classification.

The analysis in Section 3.1 has shown that the intensi-
ties in the neighborhood Ox form N clusters, each with a
distinct cluster center mi ≈ S(x)ri. Therefore, we pro-
pose to minimize the following clustering criterion for local
intensities in the neighborhood Ox:

J loc
x (U, r, S(x)) �

N∑
i=1

∫
Ox

uq
i (y)K(x− y) (6)

·|I(y)− S(x)ri|2dy
where ui is the membership function of the region Ωi, and
K(x − y) is a weighting function, which decreases as the
distance from y to the neighborhood center x increases, and
becomes zero when |x−y| > ρ, i.e., y /∈ Ox. In this paper,
the notation |a| represents the Euclid norm for a vector a
or the absolute value for a scalar a. The above criterion
function can be used for both gray level images and color
images.

The above clustering criterion function J loc
x can be writ-

ten as

J loc
x (U, r, S(x)) =

N∑
i=1

∫
uq

i (y)K(x− y) (7)

·|I(y)− S(x)ri|2dy
due to the fact that K(x− y) = 0 for y /∈ Ox.

3.3. Integration of Local Clustering Criterion

The optimal U , r, and S are defined as those that min-
imize the clustering criterion function J loc

x (U, r, S(x)) for
all the neighborhood Ox. Minimization of J loc

x for all
x ∈ Ω can be achieved by minimizing the integral of J loc

x

over Ω. Therefore, we define an energy J (u, r, S) �∫ J loc
x (u, r, S(x))dx, i.e.

J (U, r, S) �
∫ N∑

i=1

∫
uq

i (y)K(x− y) (8)

·|I(y)− S(x)ri|2dydx

By changing the order of integration, the above energy
J (u, r, S) can be written in the form:

J (U, r, S) =
∫ N∑

i=1

uq
i (y)di(I(y))dy (9)

where

di(I(y)) �
∫

K(x− y)|I(y)− S(x)ri|2dx (10)
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Image segmentation and the estimation of illumination
and reflectance can be achieved by solving the following
constrained energy minimization problem:

minJ (U, r, S) subject to U ∈ U , (11)

where U is the space of all the membership functions, i.e.

U � {(u1, · · · , uN )T : 0 ≤ ui(x) ≤ 1, i = 1, · · · , N,

and
∑N

i=1 ui(x) = 1, for all x ∈ Ω}
(12)

3.4. Energy Formulation with Membership Regu-
larization

For images with high level noise, it is necessary to regu-
larize membership function by adding a regularization term
R(U) to the above clustering energy J (U, r, S). Therefore,
we define

J reg(U, r, S) = J (U, r, S) + γR(U) (13)

In this work, we use total variation of the membership func-
tions as the membership regularization term, i.e.

R(U) =
N∑

i=1

∫
|∇ui(x)|dx (14)

Then we define

J reg(U, r, S) � J (U, r, S) + γR(U), (15)

and solve the following constrained energy minimization
problem:

minJ reg(U, r, S) subject to U ∈ U , (16)

It is worth noting that this energy is convex in the vari-
ables r and S, which implies a unique global minimum in
each of these variables given the others. The minimization
of the energy functionals J (U, r, S) and J reg(U, r, S) is
described in the next section.

4. Energy Minimization

We have defined two constrained energy minimization
problems in Eqs. (11) and (16) in the previous section. The
energy minimization for the variables r and S are the same
for both cases, as the additional membership regularization
term γR(U) in (16) is fixed as a constant when minimizing
the energy functionalsJ (U, r, S) andJ reg(U, r, S)with re-
spect to r and S.

4.1. Minimization of J (U, r, S)

4.1.1 Case q > 1

Minimization of the energy J (U, r, S) can be performed by
interleaving the minimization with respect to the variables
U , r, and S. Note that the energy J (U, r, S) is convex
in each variable, and it is a quadratic form in terms of the
variables r and S. The minimization with respect to each
variable, given the other two fixed, can be achieved by a
closed form solution as below:

• For fixed U and S, there is a unique minimizer of the
energy J (U, r, S) with respect to r, which is in the
form denoted by r̂ = (r̂1, · · · , r̂N ), is given by

r̂i =
∫

(S ∗K)Iuq
i dx∫

(S2 ∗K)uq
i dx

, i = 1, · · · , N. (17)

where ∗ is the convolution operation.

• For fixed r and S, there is a unique minimizer of the
energy J (U, r, S) with respect to U , which is given by

ûi(y) =
1

∑N
k=1

(
di(I(y))
dk(I(y))

) 1
q−1

(18)

• Given U and r, there is a unique minimizer of the en-
ergy J (U, r, S) with respect to S, which is given by

Ŝ =
(IR(1)) ∗K

R(2) ∗K
(19)

where R(1) =
∑N

i=1 riu
q
i and R(2) =

∑N
i=1 r2

i uq
i .

Note that the convolutions with a kernel K in the expression
of Ŝ in Eq. (19) confirms the smoothness of the derived op-
timal illumination image Ŝ, which has been explained from
the definition of the clustering criterion function J loc

x in the
previous section.

4.1.2 Case q = 1

For the case of q = 1, the optimization of the variables r
and S in the energy J (U, r, S) is the same as (17) and (19)
with q = 1. However, the optimal membership function U
cannot be computed by (18) in this case. The optimization
of r for the case of q = 1 is given below.

Let u1, · · · , uN be positive functions such that∑N
i=1 ui(x) = 1 for all x ∈ Ω, then the energy

∫ N∑
i=1

di(I(x))ui(x)dx (20)

is minimized if for each x ∈ Ω, the values of
u1(x), · · · , uN (x) are given by

ûi(x) =
{

1, i = imin(x);
0, i �= imin(x). (21)
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where
imin(x) = arg min

i
{di(I(x))}.

4.2. Minimization of J reg(U, r, S) with Respect to U

Using the same technique as in [10]. The first constraint
can be relaxed by adding exact penalty convex functions
ν(ui) = max (0, |2ui − 1| − 1). Using Lagrange multiplier
method, the second constraint can be removed by adding a
term α

∫
(
∑N

i=1 ui−1)2dx in (15) where α is a positive La-
grange multiplier. Then the equivalent unconstrained prob-
lem is to minimize

J reg(U, r, S) =
∑N

i=1

(
γ
∫ |∇ui|dx +

∫
uididx + ν(ui)

)
+α

2

∫
(
∑N

i=1 ui − 1)2dx.
(22)

Observing that the energy (22) is convex in variables ui, we
choose to follow [3] and take use of the fast duality projec-
tion method in [4]. So we add N auxiliary variables vi and
minimize the following approximate energy

J reg(U, V, r, S) =
∑N

i=1(γ
∫ |∇vi|dx + 1

2θ

∫
(vi − ui)2dx

+
∫

uididx + ν(ui)) + α
2

∫
(
∑N

i=1 ui − 1)2dx
(23)

where θ > 0 is chosen to be small enough so that ui and
vi are almost identical with respect to the L2 norm. Since
(23) is convex in ui and vi, we can use alternate minimiza-
tion method to find the minimizer of (23). Decompose the
problem into four sub-problems as follows

• For fixed U, r, S, solve vi by minimizing

γ

∫
|∇vi|dx +

1
2θ

∫
(vi − ui)2dx

This problem can be efficiently solved by fast duality
projection algorithm. The solution is given by

vi = ui − θdiv pi, i = 1, ...,K

where the vector pi can be solved by fixed point
method: Initializing p0

i = 0 and iterating

pn+1
i =

pn
i + τ∇ (div pn

i − ui/θ)
1 + τ |∇ (div pn

i − ui/θ)| .

with τ ≤ 1/8 to ensure convergence.

• For fixed V, r, S, we solve ui by minimizing

1
2θ

∫
(vi − ui)2dx +

∫
uididx

+ν(ui) + α
2

∫
(
∑N

i=1 ui − 1)2dx.

Remark that the presence of the ν(ui) term in the en-
ergy is equivalent to cutting off each ui at 0 and at 1.

On the other hand, if ui ∈ [0, 1], then ν(ui) = 0, and
the Euler-Lagrange equation of this problem is

1
θ

(ui − vi ) + di + α(
N∑

i=1

ui − 1) = 0

Then the minimization is given by

ui = min(max(
vi − θdi − θα(

∑
j �=i uj − 1)

1 + θα
, 0), 1).

• For fixed U and V , r and S are given by Eqs. (17) and
(19) respectively.

5. Implementation and Experimental Results

5.1. Implementation and Parameter Setting

The energy minimization is performed by an interleaved
optimization of each variable of the energy J (U, r, S) in an
iterative process. In every iteration, we minimize the energy
with respect to one of the three variables given the other two
obtained from the previous iteration. Before the iteration,
the three variables U , r, and S are initialized as follows. In
our implementation, we always initialize the illumination
image S as a constant map for simplicity. To reduce the
iteration number and save computation time, we apply the
efficient K-means algorithm as a preliminary segmentation
for the initialization of the membership function U and the
reflectance constant r.

After the optimal Û , r̂, and Ŝ are obtained as the result
of energy minimization, the segmentation result is given by
the membership functions in Û = (û1, · · · , ûN ). The illu-
mination and reflectance images are given by Ŝ and

R̂(x) =
N∑

i=1

r̂iûi(x) (24)

To estimate the illumination image more accurately, it is
preferable to choose a small scale parameter σ in the Gaus-
sian kernel K. In this case, we use σ = 1 for the estima-
tion of illumination and reflectance images. A larger scale
parameter σ would blur the resulting illumination image.
If one is only interested in the segmentation result, a large
scale parameter σ can be used in our method. In addition,
the fuzzifier q is set to q = 1.2 in most of our experiments.

5.2. Experimental Results

We first demonstrate the effectiveness of the proposed
method for three images in Column 1 of Fig. 1. The spa-
tial illumination variation is obvious in these images. The
segmentation results and illumination images are shown in
Columns 2 and 3, respectively. The segmentation results
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are highly consistent with the original images. The esti-
mated reflectance images exhibit desirable homogeneity in
each region, while intensity variation due to the illumination
changes is extracted to the estimated illumination images in
Column 3, which characterize the shapes of the surfaces in
the scenes and the lighting condition.

Figure 1. Results for three color images. Column 1: Original im-
age; Column 2: Segmentation result; Column 3: Estimated illumi-
nation image.

We have also applied our method to face images, as
shown in Fig. 2. The variation in appearance caused by spa-
tial illumination changes often poses additional challenge
in face recognition. Therefore it is in general desirable to
obtain an illumination free image, i.e., a pure reflectance
image, as the input to face recognition systems to improve
robustness and recognition rate. Fig. 2 shows the results of
our method for two face images in Column 1. The segmen-
tation results are shown in Column 2. Note that the skins
on both faces and necks are correctly identified as a single
region. As a result, the corresponding estimation of the re-
flectance images exhibit such homogeneity in the faces and
necks. The spatial variation in illumination, characterizing
the geometry of the face, is extracted in the illumination
images, as shown in Column 3.

The proposed method is by nature able to deal with inten-
sity inhomogeneities in image segmentation. Fig. 3 shows
the segmentation results of our method for four images.
There are fast local intensity variations, such as the intensity
variations within the grass or the squirrel in the first image.
For such images, it would be helpful to smooth the image
to significantly suppress fast local intensity variations. Our
method is then applied to the smoothed images, which gives
desirable segmentation results as shown in Fig. 3.

As mentioned in Section 1, the Mumford-Shah model is
able to deal with intensity in image segmentation. Naturally,
we compare our method with the piecewise smooth (PS)
model proposed in [13], which is a well-known method that

Figure 2. Result for two face images. Column 1: Original image;
Column 2: Segmentation result; Column 3: Estimated illumina-
tion image.

Figure 3. Application of our method for image segmentation. Col-
umn 1: The input images; Columns 2 and 3 show the segmentation
results in the forms of regions and boundaries, respectively.

implements the Mumford-Shah model using a level set ap-
proach. We have implemented the PS model for gray level
images in a two-phase formulation. For a fair comparison,
we chose a synthetic gray level image in Fig. 4 that can be
segmented by the PS model in a two-phase formulation. For
this image, we applied our model with the membership reg-
ularization term. We used different initializations to test the
robustness of the two methods. The results show that our
method is robust to initialization. This can be seen from
the results in Figs. 4(b) and 4(c) for two different initializa-
tions. The values of the initial membership functions are
generated as random numbers for the first initialization (for
the result in Fig. 4(b)), and a circular region is used to define
the membership functions for the second initialization (for
the result in Fig. 4(c)). It is clear that these two results are
almost the same, which demonstrates the robustness of our
method to initialization. The PS model often produces quite
different results for even slightly different initializations in
our implementation. The results of the PS model with two
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(a) Original image. (b) Result 1 of our
method.

(c) Result 2 of our
method.

(d) Result 1 of the PS
model.

(e) Result 2 of the PS
model.

Figure 4. Comparison of our method with the piecewise smooth
model.

initializations are shown in Figs. 4(d) and 4(e). The initial-
ization of the level set functions in the PS model are ob-
tained by two similar circular regions of different sizes. We
also compared the CPU times of the two methods with the
same circular region for the definition of the initial mem-
bership function in our method (for the result in Fig. 4(c)))
and the level set function in the PS model (for the result in
Fig. 4(e)). The CPU timed consumed by our method and the
PS model are 7.83 and 141.97 seconds respectively. These
CPU times are recorded in running our Matlab programs
on a Lenovo ThinkPad notebook with Intel (R) Core (TM)2
Duo CPU, 2.40 GHz, 2 GB RAM, with Matlab 7.4 on Win-
dows Vista. This experiment demonstrates the advantage
of our method in terms robustness and computational effi-
ciency over the PS model.

6. Conclusion

We have presented a novel method for image segmenta-
tion with simultaneous estimation of illumination and re-
flectance images. The proposed method is based on the
composition of an observed scene image as the product of
an illumination component and a reflectance component,
known as intrinsic images. We define an energy functional
in terms of an illumination image, the membership func-
tions of the regions, and the corresponding reflectance con-
stants of the regions in the scene. This energy is convex
in each of its variables. By minimizing the energy, image
segmentation result is obtained in the form of the member-
ship functions of the regions. Meanwhile, the illumination
and reflectance components of the observed image are es-
timated simultaneously as the result of energy minimiza-
tion. With illumination taken into account, the proposed

method is able to segment images with non-uniform inten-
sities caused by spatial variations in illumination. Com-
parisons with the state-of-the-art piecewise smooth model
demonstrate the superior performance of our method.
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