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ABSTRACT. Cell cycle is controlled at two restriction point®; and R2. At both points the

cell will commit apoptosis if it detects irreparable damageit at R; an undamaged cell also
decides whether to proceed to tBephase or go into a quiescent mode, depending on the en-
vironmental conditions (e.g., overpopulation, hypoxi#je consider the effect of this decision

at the population level in a spherical tissfre < R(t)}. We prove that if the cells have full
control atR;, they can manipulate the size 8f(¢) to ensure thad < ¢ < R(t) < C < oo;
simulations show thaR(¢) can be made nearly stationary. In the absence of such cdetgo)

if suppressor genes such as APC and SMAD have been mut&téd),in general, will either
increase tao or decrease t06. The mathematical model and analysis involve a system ofsSPDE
in{r < R(t)}.

Keywords: Cell cycle, cell cycle check points, cell cycle controgstiie growth, free boundary
problems.

1. INTRODUCTION

In a recent paper Friedman [9] developed a multiscale mddelascular tumor, based on a
system of partial differential equations (PDES) in the tumamion(2,. The model is spatially
multiscale in the sense that it includes gene mutationseatéh level and cells densities in the
tumor region; thus the model combines genetic informatiéth wontinuous mechanics. The
model is also temporally multiscale as it consider two timtibe usual time of tumor growth
and the cycling time of cells. A similar multiscale hybrid ded for colorectal tumor was earlier
developed by Ribba et al [18]. In that model the tisg¢hat a cell spends in phasef its cycle
is divided into a finite number of time steps, and the tumoiomregs fixed in time.

Although a large number of mutations can often be found irceatissues, it is commonly
believed that the initiation of cancer occurs when just Vewy gene are mutated. In the model
developed by Ribba et al [18] two such genes have been ideht8MAD and APC, both are
suppressor genes. SMAD blocks cell proliferation undermxygpconditions and APC blocks
cell proliferation when the microenvironment is overpaat with cells.

Figure 1 describes the cell cycle with phages S, G, M and its two restriction points
(or check points). During thé& phase the DNA is replicated, that is, each chromosome is
duplicated. During the mitosis phags¥,, the nucleus membrane breaks down, sister chromatids
are separated, new nucleus membranes are formed, and tigtelacells split.S and M are
separated by gap phasés andG,. The first check poinf?; is located near the end of tii&

phase, and the second check pdiatis located near the end of tlig, phase.
1



2 AVNER FRIEDMAN, BEI HU, AND CHIU-YEN KAO

M
R, check poin A

G

Ry check poin

Figure 1.

Figure 2 describes the decision a cell makes at the checksp®inand R>. At R, the cell
decides to commit suicide (apoptosis) if irreparable daafaas occurred during its growth in
theG; phase, to go to quiescent mo@g in case the microenvironmentis hypoxic or overpop-
ulated, or otherwise to proceed to thigphase. At the check poifit; the cell decides whether to
apoptose in case irreparable damage has occurred (mostly DNA replication) or to proceed
to mitosis.

Figure 2.

A cell remains in quiescent mode for a period of time, afterollit proceeds to th& phase.

For simplicity we assume that the tumor is spherical, ocogp#g regiorf), = {r < R(t)},
where R(t) varies in time. As proved in Friedman [9], there exists a uriglobal-in-time
solution to the system of PDEs and free boundary: R(t) which describe the multiscale
model. In the present paper we consider decision by theatahe check poink,, whether
to go to quiescent mode or to proceedSt@hase as a control problem. This decision, by the
cell, depends, among other things, on the microenvironneartexample, if the cell receives
a signal that the microenvironment is overpopulated antéf APC gene is heathy normal,
then the cell may decide to go into quiescent mode, deperuirie level of overpopulation;
however if APC is mutated then the cell will ignore the ovgrplation signal and will proceed
directly to S.

The optimal control at the restriction poiRf would be a control which keefd®(¢) constant,
i.e., in homeostasis. However, as will be shown by simufetieuch a control generally does
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not exist. Thus instead we address the question of whetberdhtrol atR; can achieve the
following minimal results:

(@ R(t) >c>0forallt >0,

(b) R(t) <C < xforallt > 0.

It will be shown that if all the cells have unrestricted tatahtrol atR; then they can simulta-
neously achieve both (a) and (b); the rigorous mathematicaif actually provides a bound on
C/c. However, if the cells do not have any control (for examgléheé tumor suppressors gene
APC and SMAD are both mutated) then, in general, eifRg) — 0 ast — oo or R(t) — oo
ast — oo; the latter case may be interpreted under some circumstgasavill be explained in
Remark 2.1) as the onset of cancer.

We conclude the introduction by noting that other multisdamor models were developed
by Ayati et al [1] and by Jiang et al [12]. In a different cont®owak and Sigmund [15] and
Komarova [16] showed how cellular dynamics is related toggierdynamics.

A mathematical model of tumor with three populations ofgallamely, proliferating, quies-
cent, and necrotic cells, was introduced and studied naaibyriin [17]; mathematical analysis
of the model appeared in [4] [5] [6] [7]

2. THE MATHEMATICAL MODEL

We introduce the following notation:
p1(r,t, s1) = density of cells in phas@', s1 € [0, A1];
pa(r, t, s2) = density of cells in phasé andGs, so € [0, As);
ps(r,t, s3) = density of cells in phas&/, s3 € [0, As];
po(r,t, so) = density of cells in stat&g, so € [0, Ao];
pa(r, t)=density of necrotic (dead) cells.
Herer = |z|, z varies in the domaif); = {r < R(t)} in R3.
We denote byu(r, t) the oxygen concentration and B)r, t) the density of live cells which
are not in quiescent phase. Due to cell proliferation andhdélaere is a velocity field(r, t),
which is assumed to be common to all the cells. By consemvationass,

(2.1) %ﬁi + gpi +div(p;o) = N(w)p; for 0<s; <A (1=1,2,3),
Si
0 0
(22) ﬂ + Po + diV(po’l_f) = —)xopo for 0< So < Ao,
8t 881'
19) . ~
(2.3) % +div(ps¥) = pap1(r,t, Ar) + pop(r,t, A2) — Aaps

where),; (w) are growth rates which depend on the oxygen concentration
(2.4) Ai(w) >0 ifw>0, fori=1,2,3,

Ao is the death rate of cells in quiescence modeis the clearing rate of dead cells, and 1o
are the rates at which cells &; and R, respectively, decide to go into apoptosis; the rate
parameters\, A4, i1, p2 are positive numbers, and < 1, us < 1. We are not including in
(2.3) cell death of quiescent cells; see however Remark 5.2.

We also have:

(2.5) p1(r,t,0) = p3(r,t, As),

(2.6) p2(r,t,0) = [1 = B(t) — palp1(r,t, A1) + po(r,t, Ao),
(r,¢,0)
(r,¢,0)

r, t7

[
(2.7 pa(r,t,0) = (1 — p2)p2(r, t, Az),
(2.8) po(r,t,0) = B(t)p1(r,t, Ar).
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Equation (2.6) expresses the assumption that at the end 6fithhase a fractiop¥(¢) of the
cells goes into quiescence, and a fractigngoes into apoptosis, while the remaining fraction
of cells at the end of th&'; phase as well as the cells at the end of the quiescence peatied e
the S phase. The functiofi(¢) is viewed as a control function,< 5(t) < 1 — p1.

We introduce the total density of each population of cells:

A;
Qi(r,t) = / pi(ryt,s;)ds; (i=0,1,2,3)
0

and formally setQ4(r,t) = p4(r,t). Then

3
Q(rt) = Qi(r,t)
i=1

is the combined density of cells in phasgs, S, G, and M. Later on we shall see how the
function3(t) relates to the signals from the microenvironment which al&yed to the cell by
means of APC (in case of overpopulation) and SMAD (in caseg/pbkia). We shall then view
A(t) as a functional

(2.9) Bt) = Klw, Q|(1).

Although the controp shall generally depend dm, ¢), rather than om alone, we assume here,
for simplicity, that3 depends only ok.
We assume that the total density of cells, live and dead,nistamt, and for simplicity take
the constant to bg, so that,
4

(2.10) > Qi(r,t) = const.=1.
=0
We integrate each of the equations in (2.1) and (2.2) eyee (0, A4;) and sum up the
resulting equations and (2.3). Using (2.5)—(2.8) we find #fiahe boundary integrals resulting
from integratingdp; /0s; cancel out, so that

4 3
(2.11) Z [8;% + div(Qiﬁ)] = Z Xi(w)Qi — MQo — MQa = H(G, w).
i=0 i=1

Assuming that is radially symmetric, we can write it in the form
v =ve, Wwheree, = f,
,
so that
div(@p) = -5 —-(r?up) if p = p(r):
1VUp—T26TT'Up p=pr);
note that(0) = 0.
From (2.10), (2.11) we then obtain

) -
(2.12) divi = %E(ﬂ )= H(Q,w).

Finally we assume that the oxygen concentratign t) satisfies the diffusion equation with
a positive bounded sourée

(2.13) —Aw+Qw=nh, h(rt)=~(rt)(w—w) inQ;

wherew is the average oxygen concentration in a healthy tissue lenddurce represents
oxygen transported from the vasculature into the tissuepiscribe the boundary condition

(2.14) w=w onoY
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and a free boundary condition, which says that the boundanyeswith the velocity of the
cells,

dR(t)

2.15 = .

( ) dt uir r=R(t)

We also prescribe initial data

(216) Di i = piO(T7 SZ) (Z = O? 17 27 3)7 p4’t70 = p40(7")7 R =0 = RO >0
that are nonnegative, namely,

inf io(r,s) >0 (0<i<3), inf > 0.
0<r<RloI,10<s<Aip O(T S) - ( == ) O<1Tn<R0p40(r)

The following global existence and uniqueness result fdially symmetric solutions is
established in Friedman [9] in cagds a function ofw and@),

(2.17) 8 =Kw,Q).

Theorem 2.1. If the p;y belong toC (Qy x [0, A;]), 0 < i < 3, pso belongs toC (Q), pio
(0 <7 < 4) satisfy (2.5)—(2.10), and;(z) (1 < i < 3)and K (z, Q) belong toC* for » € R!,

Q@ € [0,1] and~(r,t) is a continuous function for > 0, ¢t > 0, then there exists a unique
radially symmetric solutiorip;, w, v, R) of (2.1)—(2.10), (2.12)—(2.16) witR(t) in C[0, o),
andp; >0 (0 <1i<4).

Remark 2.1. In this paper we do not specify the coefficierft, ¢) in the source term in the
oxygen equation (2.13); depends directly on the blood vasculature. In a healthy abtigsue,
~ is such that it ensures that the oxygen lavés typically above the necrotic level,, so that
the cells continue to grow during the cell cycle pha&gsS, G2, M. Hence, the assumption
(2.4) holds in healthy normal tissue. We expect that as Ianidpe cells have full control over
B(t) and (2.4) holds, the radiug(t) will remain bounded anl < ¢ < R(t) < C < oo will
hold for all ¢ > 0, with C/c “fairly close” to 1, at least for some initial data. Howevirthe
control 3(t) is lost (in the sense tha =const.) through gene mutations, then a tumor may
develop. Whether the tumor will continue to grow (beyondw faillimeters) will depend on
the tumor ability to induce angiogenesis, that is, the faromaof new blood vessels moving
into the tumor, thus providing it with oxygen (and other merits). The effect of angiogenesis
is expressed by taking = ~(r, ¢, e) in (2.13) wheree is the density of the endothelial cells.
Without angiogenesis, the oxygen level in the core of thedtuill decrease below the necrotic
level w, and then (2.4) will no longer hold there, and instead we diwale

Aj(w) <0 ifw<w, (j=1,2,3).

Angiogenesis has been modeled in the literature quite sixtely; see [13], [14] and the ref-
erences therein. In this paper we do not include angiogeeagiicitly; instead we assume it
implicitly by imposing the condition (2.4) throughout theogving tumor. Although we assume
that the oxygen concentration is above the necrotic leyglthis concentration may still be
hypoxic in some regions within the tissue. We shall prove ifthe control3(¢) is lost (more
precisely, if3(t) =const. and the constant is small) and (2.4) holds, then thies&(¢) of the
tumor will grow tooco ast — oo. We can interpret this result as the onset on cancer.

Itis interesting to note (as proved in [11]) that, withougargenesis (i.e., it = 0in (2.13)),
even ifw, = 0, thatis, even if

Aj(w) >0 for w>0, X(0)=0, (j=1,2,3),

then alreadyRr(t) < C' < o forall ¢ > 0.



6 AVNER FRIEDMAN, BEI HU, AND CHIU-YEN KAO

3. [B(t) CONSTANT
For simplicity we first consider the case
(3.1) A1 (w) = Ag(w) = A3(w) = const. = A,

The case wherg; = \;(w) (fori = 1,2, 3) will be considered in Section 6. It is convenient
to introduce the function

(l—uz)pg(r,t,s), 0§8§A27
(32) p(T,t, S) = p3(7’, tv s — AQ)a AQ S S S AQ + A37
p1(r,t,s — Ay — As), Ay + A3 <s< A1+ A+ A3 = A,
so that
1 Ao A
(3.3) Q(r,t) = / p(r,t, s)ds+/ p(r,t, s)ds.
1—p2 Jo Ay
By conservation of mass,
op Op | oo
(3.4) E—i—g—i—dlv(pv) = Xp for 0<s< A,
0 0, . _,
(3.5) % + % +div(po¥) = —Xopo for 0<s< A,
0 . s
(3.6) % +div(pa?) = pap(r,t, A)+ T f2 p(r,t, As) — Aaps
— M2
with
(37) p(T, tv O) = (1 - H?)[l — M1 — B(t)]p(T, tv A) + (1 - ,UQ)pO(T, ta Ao),
(3.8) po(r,t,0) = B(t)p(r,t, A).

Note thatp(r, ¢, s) is continuous ins, 0 < s < A. Itis natural to assume that the cell remains
in quiescent mode for relatively long time, so that

(3.9) A > A,

but, mathematically, this assumption is not necessary.rifveduce the volume integrals
R(t)
t.s) = [ rplosts)ar
0
R(t)
po(t,s) = 47r/ r2po(r,t, s)dr,
0

R(t)
pa(t) = 47r/ r2p4(r, t)dr.
0

Integrating (3.4)—(3.6) oveR, and using (2.15), we obtain

% % = Xp for 0<s< A,
% % = —XoPo for 0<s<A,
Opa ~ H2 < ~
—-— = t, A t,Ag) — .
5 pap(t, A) + _sz( s Az) — Aapy
From (3.7), (3.8) we also get
(3.10) p(t,0) = (1 — p2)[1 — 1 — BE)Ip(E, A) + (1 — p2)Po(t, Ao),

(3.11) Po(t,0) = B()p(t, A).
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Solving the equations fg¥, py along the characteristics, we obtain

(3.12) pt+s,s) = e p(t,0), for t >0, 0<s<A,
(3.13) Po(t+s,8) =e 2%py(t,0),  for t>0, 0<s< A,
Define
N A A ,R(t)
Q) :/ p(t, s)ds E/ / 42 p(r,t, s)drds;
0 0 0
then )
@(t) < total mass of cells in phasés, S, Go, M < 1 @(t).
— M2

We also define

. Ao A rR(1)
Qo(t) = / Do(t, s)ds = / / 4712 po(r,t, s)drds
0 0 0
as the total mass of cells in phasgs. If ¢ > A + Ay, then, by (3.12), (3.10) and (3.13),

N A
o = / At, 5)ds
A
= / ep(t — 5,0)ds
0
A
= (1= Mz)/o e (ﬁ(f =8, A)[1 — 1 — Bt — )]+ Do(t — s, Ao))ds
A
= (- ) / Bt — 5, A)[L— 1 — Bt — 5)]ds

A
+(1— Mg)/ eMemMAG(t — s — Ag, 0)ds,
0

or, by (3.11),
N A
QO = (=) [ B s A1 = (e = s)lds

(3.14) o

+(1 - ,ug)/ eMe ARt s — Ag)p(t — 5 — A, A)ds.
0
We shall now assume that
(3.15) B(t) = const.= (3,

that is, the cells have no (viable) control/at over the decision whether to go into quiescent
state or to proceed to the phase. Then, by (3.14), and (3.12), (3.13),

A
Q0 = (=)t == 0) [ pit = A s)ds

A
+ﬁe_’\°A°e’\A/ (1 — p2)p(t — A — Ay, s)ds
0

(1= p2)(1 = p1 — B)MQ(t — A) + (1 — pp)Be MM eMQ(t — A — Ay),

or,

-~ -~

3.16) Q1) =(B)Q(t — A) + az(B)Qt — A — Ap)
wherea; (8) = (1 — p2)(1 — p1 — ﬁ)e)‘A, az(B)=(1 - ug)ﬁe_’\UAoe’\A.
We shall assume that

(3.17) (1—p)(1—p)eM >1, (1= )1 — pg)e oAoerM < 1,
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Lemma 3.1. Under the assumption (3.17) there exists a unigti® < §* < 1 — puq, such that
(i) if 0 < B < g% then
(3.18) Jlim Qt) = oo;

(i) if p* < B <1-p1,then

(3.19) lim Q(t) = 0.

t—o0

Proof. Clearly a; () + a2(3) is monotonically decreasing j#, and from (3.16) it follows that

>1 ifg=0,

a1 () + az(8) = (1 - “2)((1 — =B ﬁe_/\OAUeAA) { <1 ifg=1-m.

Hence there is a unigug such that

>1 if0<g<pg*,
a(f) +aa(B)§ =1 if g=p",
<1l ifp*<p<1l—p.

Supposé) < 3 < 3%, so thatoy (8) + a2(8) =1+6, § > 0. Let

M; =

= in At, j=1,2,3,---.
J(A+A0)<t<(j+1)(A+Ao) Q( ) J

Then, by (3.16),
Q) > (1+8)M; if 2(A+ Ag) <t <2(A+ Ag) + 4,
and, in particular,
Q(t) > My for (A+ Ag) <t <2(A+ Ay)+ A.
Repeating this procedutetimes, we obtain
Q(t) > (1+0)M; for 2(A+ Ag) <t < 3(A+ Ay)

if & is such thattA > (A + Ag). Taking “inf” over the interval[2(A + Ag),3(A + Ap)] it
follows thatM, > (1+6)M;. Similarly M; > (14 6)7 M; and thereforéd/; — oo asj — oc.
The cased* < 8 < 1 — puy is similar if we replaceinf” by “sup”and1+ ¢ by 1 — 6. O

Theorem 3.2. Assume that (3.17) holds. (i) 0f< g < §*, then
R(t) — oo ast — oo;

(ii) if B* <B<1-—p,then
R(t) - 0 ast — oo.

Proof. If 0 < g < %, then (3.18) holds, and since

CA?(t) = 4m /OA (/OR(t) r2p(r,t, s)dr) ds

R(t) A
= 47r/ 7‘2(/ p(r, t, s)ds)dr
0 0

R(t)
< 47r/ ridr = 4—7TR3(t),
0 3

we conclude thaR(t) — oo ast — oc.
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In cases* < 8 < 1 — u1, we need, in addition to (3.19), to estimae(t) andp,(t). We
begin withQ. By (3.13), (3.8),

Ao
Golt) — /0 Bo(t, 5)ds

Ag
= / e 5By (t — 5,0)ds  (assuming that > Ay),
0

Ap
/ e NSB(t — 5)p(t — 5, A)ds.
0
We takek such thatc A < Ay < (k + 1)A. Then, by (3.8), (3.12),

~ Ao
/ Po(t, s)ds
0

k

(G+1A
< Z/ e 0Bt — 8)p(t — s, A)ds
j=0"74

O
o
—~
~+
~

k

(G+nA
_ Z/A e 05 3(t — ) MP(t — s — A, 0)ds
j=0"7

E o rG+DA _
= Z /A e Bt — 5)eMe IR — A— jA s — jA)ds
i=07J
k

> (1= p)eMQ(t = (i+1)4),

Jj=0

IN

so that, by Lemma 3.1,

(3.20) lim Qo(t) = 0.

t—o0o

We next estimat@, (t):

t t
pa(t) pa(0)e ™M + #1/0 e MU=Tp(r, A)dr + 1 /_LQM /0 e MUTTp(r, Ag)dr

I + I+ 1.

Clearly I; goes to zero as— oo. Next, by (3.12),

[t/AI+1 (41)A
L = m Y, / e MG, A)dr

j=0 vJA
[t/A]+1 _ (j+1)A

< w Z 87}‘4t+A4(7+1)A/ p(r, A)dr
=0 A
[t/A]+1 (G+1)A

= Y e MHMUTDA / ATTINBGA, A+ A - 7)dr.
=0 ja

By Lemma 3.1, for any smadl > 0, there is aJ = J(¢) sufficiently large such that

~

Q(jA) < cforallj > J.
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Then
J [t/A]+1
I, < MlZe—A4t+>\4(.7+1)Ae>\AQ(jA)+€M1 Z e NatHAa(GH1)A A
J=0 j=J+1

era([t/A1+3)A _ 1€>\A

IN

3 e MERGHIARAG( A) 4 epne

» |
Jj=0

and the last term is bounded by

oBhaA
ey ———e
L

Hence
83A4A

limsup I5(t) < epy
t—o0

and, since is arbitrarylim;_. ., I2(t) = 0. In a similar manner one can shaian;_, ., I5(t) =
0, so that

€
A 10

(3.21) lim py(t) = 0.

t—o0

Since

- - R(t) 4
Q(t) + Qo(t) + pa(t) > 4(1 — /Lz)ﬂ'/ r?-1dr = ?”(1 — o) R3(t),
0
we conclude from (3.19)—(3.21) that
lim R(t) = 0.

t—o0

Remark 3.1. The arguments used in the proof of Lemma 3.1 show thatif 5*, then

0< litminf@(t) < limsup Q(t) < .

t—oo

Remark 3.2. The case5(t) = const. may arise in a situation where the cell does not respon
to signals from its microenvironment, that is, when both A&@ SMAD are mutated. In this
case, as explained in Remark 2.1, Theorem 3.2 (i) may bepiretied as the onset of cancer.

4. 3(t) AS FREE CONTROL

In this section we continue to assume that (3.1) holds, dafethe case of\; = \;(w)
for j = 1,2,3 to Section 5. We also assume that (3.17) holds and wish to Hetvthere is a
control 3(¢) that depends on the populatigh(or rather onQ) for which

4.1) 0<c<R()<C<oo forallt.

We assume for simplicity that
(4.2) Ag =mA, m integer> 1.

In order to defing3(t), we choose any positive constapt and numberg, 3 such that
(4.3) 0<B<B <B<1l—p.

Assuming that3(¢) has already been determined fot ¢, whent, = jA (j integer> 1), we
take

forty <t <to+ Aif Q(to) > Q*

g
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With this choice of5(¢) we can then extend the solution of the free boundary probterthe
piandR(t)tojA <t < (j+1)A. Ifwe setQ; = Q(jA), 8; = B(jA) then, by (3.14),

45) Qj=(1—p2)(1—p1 — Bj-1)eMQj1 + (1 — p2)Bj—1-me™e 2™ AQ, 1,

and

B Q=@
Define
Quin = min (1= p2)(1 = = B)eMQ", (1 = pu2)BeMe ™" 4Q", Q1.+, Qo )
~ 7 (1 = pg)feteromA L (U= p2)(1 =y = By
Qmaz = max(1_(1—,u2)(1—ul—ﬁ)e/\f‘@ ’1—(1—/1,2)B6>‘A6_>‘UWAQ )

(1 - /LQ)(I — M1 — B)GAAQ* + (1 - IUJQ)BG)\Aei)\O’mAQ*a @17 e 7@m+1) .

Note that with the choices ¢f andg, we have

(4.7) (1= ) (1 — i1 — B)eM + (1 — pg)BeMe oA > 1,
(4.8) (1= p2)(1 = 1 = B)eM + (1 = pg) BeMeomA < 1.
Lemma4.1. Assume that (3.17) holds. Then

(4.9) Qumin < Qj < Quaxr for 0<j < oo.

Proof. We use induction onj. It is clear that (4.9) is valid for all < j < m + 1. Suppose
that (4.9) holds for up tg — 1 wherej > m + 2. There are only four possible cases for
@jfla/@jfmfl: R

), Q12 Q% Qj-1-m > Q%

i), Qj-1 > Q% Qj—1-m < Q7

i), @j—1 < Q% Qj-1-m < Q7

V), Qj—1 < Q" Qj-1-m = Q"

In case i) we have, by (4.5), (4.6),

Qi = (1= p2)(1 = p1 — B M Qjo1 + (1 — pp)BeMe2mAQ; 1,
so that, using (4.8),
Q; < {1 = p2)(1 = py = B)eM + (1 — pg)BetMeromA} Qmar < Qumaz,
whereas, by the two inequalities of case i),
Q; > {1 = )1 — g — B)eM + (1 — p2)Be*e™™4L Q% > Qi
In case ii) we have, by (4.5), (4.6),
Q5= (1—p2)(1 = p1 — B)eM Qo1 + (1 — p2) BeMe M AQ; 1y,

so that, by the inequalityl — o) Be* e 20mAQ* < {1 — (1 — p2)(1 = p11 — B)eM } Quas
we get

@7 S (1 - M?)(l — M1 — B)e)\AQ\mam + (1 - M?)ﬁe)\AeiAomAQ* S Q\mam-

On the other hand, by the inequalities of case ii),

@j = (1 - /1’2)(1 — M1 _B)eAA@* > Q\min-
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Case iii) can be treated in a similar way as case i) using ,(4&) case iv) is similar to
Case ii). 0

Theorem 4.2. Assume that (3.17) holds antft) is defined by (4.4). TheR(t) satisfies (4.1).

Proof. Using Lemma 4.1, one can establish the upper and lower bo‘on@(t) for all time
0 < t < co. From the lower bound o@)(t) we derive a positive lower bound d®(t). Using
arguments similar to those in the proof of Theorem 3.2 we tsmestablish upper bounds on

~

Qo(t) andpy(t), and thereford?(t) must also be bounded from above. 0O

Remark 4.1. The control function used in Theorem 4.2 depends on the patpllation of
cells, @ in the tissue. If APC can control any situation of overpapioin, then, according to
Theorem 4.2, it can ensure that the tisgue< R(¢)} will remain bounded, without actually
dying (i.e., withR(t) > ¢ > 0). From the oxygen equation (2.13) and the boundary comditio
(2.14), it is clear that there is a one-to-one corresporelbetween) andw. Hence we can
express the strategy (4.4) also in terms of the, ¢), ¢ < t,. We conclude that if APC is
mutated, but SMAD is healthy normal so that it can sense thygex level and use this to
control R(t), then indeed it may forc&(t) to satisfy (4.1).

5. THE CASE OF VARIABLE \;(w)

In this section we extend the results of Sections 3, 4 to tee ednere),; (w) are functions
of w, and

(5.1) A;(w) belong toC [0, o) for j = 1,2, 3.
In this case IR
., b _ 5
at " os 7
where
= i i ; <A< ; = .
A= min min A, (w(r,t) <A < max max A (w(r,t)) = A4
It follows that
op , 9p -
5.2 — + = > A
(-2 o " 9s =P
and
dp  Op A
) = 4+ xX< .
(5:3) ot + ds — A+D
Analogously to (3.17) we assume that
(5.4) (1 —p)(I—p2)ed 4> 1, (1= p)(1 = pg)e oMot 4 <1
and set

(5:5)  ay(B) = (1= p2)(1 — 1 = B4, a5 (8) = (1 — pa)Be Moo,
Then there exists a uniqu¥ , 0 < 5* < 1 — uy such that

>1 ifo<g<p*,
ar(B)+oy(B)g =1 f3=p2,
<1 ifp<B<1—p.
Using (5.2) we derive the inequaliti@ét, s) > p(t — s,0)e**for0 < s < A, p(t — s, A) >
p(t — A, s)e*~(A=%) for 0 < s < A, and then, analogously to (3.16),

~

Qt) > a7 (B)Q(t — A) + oy (B)Q(t — A — Ag).
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As in the proof of Lemma 3.1, we can now show that (3.18) hdlds< 5*, so thatR(t) — oo
ast — oo.
Similarly, if we assume that

(5.6) (1= p)(1—p2)eMh >1, (1= ) (1 = pg)e Moot A <1
and set

(5.7)  af(8)=(1—p2)(1 —ju — B4, aF (B) = (1 — pz) fe oMM A,
then exists a uniqué;, 0 < 87 <1 — uy such that

>1 ifo<pB<py,
af (B)+a3 () =1 if B=p7,
<1 ifpr<B<1l—p.

Using (5.3) we can then derive the inequality
Q1) < of (B)Q(t — A) + a3 (5)Q(t — A — Ay),

from which we deduce that, i} < g < 1 — puy, then (3.19) holds. One can next establish
(3.20) and (3.21) as before, and thus concludeR{at — 0 if t — oc.
We summarize:

Theorem 5.1. (i) If (5.4) holds and) < 8 < *, then
R(t) — oo ift — 0.
(i) If (5.6) holds and3} < 3 <1 — 1, then
R(t)— 0 ift— oo.
As explained in Remark 2.1, case (i) may be interpreted asrbet of cancer.

Remark 5.1. Note that, in generali* < 3. Itis not clear howR(t) behaves if? is a constant
satisfyings* < 3 < 7.

We next turn to extension of Theorem 4.2, assuming that Bo8) énd (5.4) are satisfied.
We define3(t) as in (4.4), but with) < 3 < g* < 31 < B < 1— p1, sothat

(5.8) (1= 1) (1= po — B)erA + (1 — pg)BeModoer4 > 1,
(5.9) (1= p2)(1 = po = B)eM A + (1 — pg)Be0doer A < 1.
Lemma 4.1 then extends to this case provid}a,gtn and@mam are replaced by
Qumin = min ((1 — p2)(1 — p1 — B)e* Q7
(1 - /J'Q)BekiAe_)\omAQ*a Q\la Tty @m-i—l)a
S R ) L et [ e
- L= (1= ) (1= = XA 71— (1= pa)fedsAemromad =
(1 - /12)(1 - H1— ﬁ)e>‘+AQ* + (1 - /’LQ)QB)\+A€_>\0mAQ*7 @17 Tty Q\m+1) .

We can now proceed as before to derive the following theorem.

Theorem 5.2. Assume that (5.4), (5.6) hold a¢) is defined by (4.4) witlﬁ,ﬁ asin (5.8),
(5.9). Then

0<c<R(t)<C<oo forallt.
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Remark 5.2. In the model presented in this paper we have not includedehthdf quiescent
cells in the equation fop,; this can be done by adding some averaggydf, ¢, s) with respect
to s. Adding such a term does not change the results of Sectidns 4,

6. NUMERICAL SIMULATIONS

The proof of Theorem 5.2 provides an upper bounddgr, that is, an upper bound on
the oscillations ofR(t). In homeostasif(t) is nearly stationary. In this section we explore
numerically how the choice of the contrg(¢) can be improved to achieve nearly stationary
R(t). For simplicity we consider the case(w) = A for j = 1,2,3. We take the parameter
values:

A=In2day '~ 0.693day ', X\ = % In2day ' ~ 0.0693day ",
which corresponds to cell cycle period of 24 hours [2];

A = 1day, A1:A2:A3:%day, Ao = 5day,

1 1
MAg = 5)\14, mAg = 5 In2 = 0.347, and m =5.

Since, according to [3], death rate is approxima@tyf proliferation rate, we take
1

Mlz,uz:g-

We finally choose the clearing rate of death cells to be ([8])
1 _
)\4 = §day 1.

Note that (3.15) is actually satisfied faf = p2 = pin the range.16 < p < 0.29.
We shall simulate the solution of the free boundary problenite initial values

1
po(r,s,0) = —————(—cos(6ms) + 1), 0<s< A
6% + Zlog(2)
1
p(r,s,0) = (—cos(6ms) +1), 0<s<A.

6% + %1og(2)
The subsequent considerations, however, can be appliedytindial data. In the numeri-
cal simulations we use finite difference upwind discretain spacer ands (dx = ds =
A7 /128) with forward Euler method in time (dt = 0.5dx) to solve the hyperbolic type equa-
tions (2.1)—(2.3) with the boundary conditions (2.5)-J2Fhe velocity v’ is obtained by mid-
point integration off: v’ = % [ r2H(Zj,w) (whereH(Zj,w) is given by (2.11)) and (2.10)
through several numerical integrationggf

We are going to illustrate several control strategies. Vggrbeith the choice3(t) =const=
(. According to Theorem 3.2, with

. 7 -
= 2002 —v2) 0.6,
if 8 < 8* thenR(t) — 0 ast — co and if 3 > 3* thenR(¢t) — 0 ast — co. This is illustrated
in Figure 3 with3(¢) = 8 = 0.2, 0.4, 0.6, and0.8.

For 8 = 0.6, the trend for the limit ofR(¢) takes longer time.

The choice3(t) =const. is of course not robust. The derive a robust contrdolew the
proof of Theorem 4.2, but first choogkt) for 0 < ¢ < ¢, = Ay to be different froms* in
order to be in a non-stationary situatiorcat ¢y; we takes(t) = 0.5 for 0 < t < ¢,.

Figure 4 shows the results for different constafts The asymptotic behavior aR(¢) at
large time strongly depends on the choi@é. The controld makesH fluctuate around zero
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FIGURE 3.
The evolution ofR(¢) w.rt(a)3 = 0.2 (b) 3 =0.4(c) 3 = 0.6 (d) 3 = 0.8.

andR(t) fluctuate around a constant radius after certain fim&@he radiusR(t) stabilizes for
T > 75 when@* = 0.8 and forT > 40 when@Q* = 1.4.

Although the strategy adapted in the proof of Theorem 4.8hsist, we can do better by an
adaptive control approach, as illustrated in Figure 5.

Instead of fixingl* in the previous example, we choa3é = @(jA). The controlis chosen
as

B Q) =

wherejA <t < (j + 1)A. Due to the initial controB(t) = 0.5 for ¢ < A, and the control at
later time, the radius first grows and then stabilizes. Thasadoes not fluctuate as frequently
as in the previous examples. A completely different appndacsatisfyingR(t) is to choose
B(t) such thatd = 0, so thatR(t) =const. The problem with this approach is thét) tends in
general to exit the intervdl, 1— . —1). Nonetheless one can achieve an improved performance
hybrid method which combines this strategy as long@s remains in the interveld, 1 — p1),

and then the adaptive control strategy of (6.1). This isthated in Figure 6 which shows that
R(t) stabilizes faster than in Figure 5.
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The evolution ofR(t) for (&) Q* = 0.8(b) @* = 1.0(c) Q* = 1.2(d) Q* = 1.4.
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FIGURE 5.
The evolution ofR(¢) for adaptiveQ*.
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FIGURE 6.
The evolution ofR(t) for adaptiveQ*.

7. CONCLUSION

The growth or shrinkage of a tissue, taken as a sphere R(t) }, depends on a decision that
individual cells make whether to proceed directly from tastriction pointR; in theG; phase
to the S phase, or whether to go first into quiescent state. If thes eat healthy normal, then
when the microenvironment is overpopulated (or hypoxinyl d the cells are endowed with
full control at Ry, 3 = 3(t) in some intervalp < §(t) < 3 at Ry, then they can act in a way
that will not increase or decrease the tissue’s diameter dmerihan a multiplicative constant.
Simulations show that this control when chosen in an adaptimnner can rendét(t) nearly
stationary after a relatively short time. However if sugs@ genes, that are designed to block
proliferation when the microenvironmentis unfavorablecfsas APC and SMAD) are mutated,
then the radiugz(¢) may increase teo (this could be interpreted as the onset of cancer in the
presence of angiogenesis, as explained in Remark 2.1),coeake td) (i.e., the tissue dies
out).

These results are based on a multiscale model with two tiedescthe usual timg and the
running time of cells in each phase of the cell cycle. The rhedaations are based on mass
conservation for cell populations and on a diffusion edqurafor the oxygen. It was assumed
that all the cells act in unison d;. However the results can be extended to two (or more)
populations of cells. For example, suppose one populafioelts is healthy, and co-exists with
another population in which SMAD and APC are mutated so thatoatrol at R; is lost for
the latter population. In this case, agdtft) — oo under the assumption of Theorem 3.2 (i);
however under the conditions of Theorem 3.2 (#)) will remain bounded from below by a
positive constant (rather than go to zero) due to the heakhy of the tissue.

The present model makes the implicit assumption that sdentaie tumor was initiated (due
to mutations of SMAD and APC) it induces angiogenesis, and #nsures continuous supply
of oxygen; see Remark 2.1. Future work should include arggiegis directly by taking =
~(r,t,e) in (2.13) where: is the density of the endothelial cells, and allow ¥)éw) to become
negative whenever the oxygen concentration is below theotiedevel. The mathematical
model for this situation should include additional diffeti@l equations for the concentration of
tumor angiogenetic factors and for proteolytic enzymes, fan densities of endothelial cells
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and macrophages; it should also included the effect of lpbn the tumor cells as they
migrate into the stroma.
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