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ABSTRACT. Cell cycle is controlled at two restriction points,R1 andR2. At both points the

cell will commit apoptosis if it detects irreparable damage. But atR1 an undamaged cell also

decides whether to proceed to theS phase or go into a quiescent mode, depending on the en-

vironmental conditions (e.g., overpopulation, hypoxia).We consider the effect of this decision

at the population level in a spherical tissue{r < R(t)}. We prove that if the cells have full

control atR1, they can manipulate the size ofR(t) to ensure that0 < c ≤ R(t) ≤ C < ∞;

simulations show thatR(t) can be made nearly stationary. In the absence of such control(e.g.,

if suppressor genes such as APC and SMAD have been mutated),R(t), in general, will either

increase to∞ or decrease to0. The mathematical model and analysis involve a system of PDEs

in {r < R(t)}.

Keywords: Cell cycle, cell cycle check points, cell cycle control, tissue growth, free boundary

problems.

1. INTRODUCTION

In a recent paper Friedman [9] developed a multiscale model of avascular tumor, based on a
system of partial differential equations (PDEs) in the tumor regionΩt. The model is spatially
multiscale in the sense that it includes gene mutations at the cell level and cells densities in the
tumor region; thus the model combines genetic information with continuous mechanics. The
model is also temporally multiscale as it consider two times: the usual time of tumor growth
and the cycling time of cells. A similar multiscale hybrid model for colorectal tumor was earlier
developed by Ribba et al [18]. In that model the timesi that a cell spends in phasei of its cycle
is divided into a finite number of time steps, and the tumor region is fixed in time.

Although a large number of mutations can often be found in cancer tissues, it is commonly
believed that the initiation of cancer occurs when just veryfew gene are mutated. In the model
developed by Ribba et al [18] two such genes have been identified, SMAD and APC, both are
suppressor genes. SMAD blocks cell proliferation under hypoxic conditions and APC blocks
cell proliferation when the microenvironment is overpopulated with cells.

Figure 1 describes the cell cycle with phasesG1, S, G2, M and its two restriction points
(or check points). During theS phase the DNA is replicated, that is, each chromosome is
duplicated. During the mitosis phase,M , the nucleus membrane breaks down, sister chromatids
are separated, new nucleus membranes are formed, and the daughter cells split.S andM are
separated by gap phasesG1 andG2. The first check pointR1 is located near the end of theG1

phase, and the second check pointR2 is located near the end of theG2 phase.
1
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Figure 2 describes the decision a cell makes at the check points R1 andR2. At R1 the cell
decides to commit suicide (apoptosis) if irreparable damage has occurred during its growth in
theG1 phase, to go to quiescent modeG0 in case the microenvironment is hypoxic or overpop-
ulated, or otherwise to proceed to theS phase. At the check pointR2 the cell decides whether to
apoptose in case irreparable damage has occurred (mostly inthe DNA replication) or to proceed
to mitosis.
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Figure 2.

A cell remains in quiescent mode for a period of time, after which it proceeds to theS phase.
For simplicity we assume that the tumor is spherical, occupying a regionΩt = {r < R(t)},

whereR(t) varies in time. As proved in Friedman [9], there exists a unique global-in-time
solution to the system of PDEs and free boundaryr = R(t) which describe the multiscale
model. In the present paper we consider decision by the cell,at the check pointR1, whether
to go to quiescent mode or to proceed toS phase as a control problem. This decision, by the
cell, depends, among other things, on the microenvironment. For example, if the cell receives
a signal that the microenvironment is overpopulated and if the APC gene is heathy normal,
then the cell may decide to go into quiescent mode, dependingon the level of overpopulation;
however if APC is mutated then the cell will ignore the overpopulation signal and will proceed
directly toS.

The optimal control at the restriction pointR1 would be a control which keepsR(t) constant,
i.e., in homeostasis. However, as will be shown by simulations, such a control generally does
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not exist. Thus instead we address the question of whether the control atR1 can achieve the
following minimal results:

(a) R(t) ≥ c > 0 for all t > 0,
(b) R(t) ≤ C < ∞ for all t > 0.
It will be shown that if all the cells have unrestricted totalcontrol atR1 then they can simulta-

neously achieve both (a) and (b); the rigorous mathematicalproof actually provides a bound on
C/c. However, if the cells do not have any control (for example, if the tumor suppressors gene
APC and SMAD are both mutated) then, in general, eitherR(t) → 0 ast → ∞ or R(t) → ∞
ast → ∞; the latter case may be interpreted under some circumstances (as will be explained in
Remark 2.1) as the onset of cancer.

We conclude the introduction by noting that other multiscale tumor models were developed
by Ayati et al [1] and by Jiang et al [12]. In a different context Nowak and Sigmund [15] and
Komarova [16] showed how cellular dynamics is related to genetic dynamics.

A mathematical model of tumor with three populations of cells, namely, proliferating, quies-
cent, and necrotic cells, was introduced and studied numerically in [17]; mathematical analysis
of the model appeared in [4] [5] [6] [7].

2. THE MATHEMATICAL MODEL

We introduce the following notation:
p1(r, t, s1) = density of cells in phaseG1, s1 ∈ [0, A1];
p2(r, t, s2) = density of cells in phaseS andG2, s2 ∈ [0, A2];
p3(r, t, s3) = density of cells in phaseM, s3 ∈ [0, A3];
p0(r, t, s0) = density of cells in stateG0, s0 ∈ [0, A0];
p4(r, t)=density of necrotic (dead) cells.

Herer = |x|, x varies in the domainΩt = {r < R(t)} in R
3.

We denote byw(r, t) the oxygen concentration and byQ(r, t) the density of live cells which
are not in quiescent phase. Due to cell proliferation and death, there is a velocity field~v(r, t),
which is assumed to be common to all the cells. By conservation of mass,

∂pi

∂t
+

∂pi

∂si
+ div(pi~v) = λi(w)pi for 0 < si < Ai (i = 1, 2, 3),(2.1)

∂p0

∂t
+

∂p0

∂si
+ div(p0~v) = −λ0p0 for 0 < s0 < A0,(2.2)

∂p4

∂t
+ div(p4~v) = µ1p1(r, t, A1) + µ2p2(r, t, A2) − λ4p4(2.3)

whereλi(w) are growth rates which depend on the oxygen concentrationw,

(2.4) λi(w) > 0 if w > 0, for i = 1, 2, 3,

λ0 is the death rate of cells in quiescence mode,λ4 is the clearing rate of dead cells, andµ1, µ2

are the rates at which cells atR1 andR2, respectively, decide to go into apoptosis; the rate
parametersλ0, λ4, µ1, µ2 are positive numbers, andµ1 < 1, µ2 < 1. We are not including in
(2.3) cell death of quiescent cells; see however Remark 5.2.

We also have:

p1(r, t, 0) = p3(r, t, A3),(2.5)

p2(r, t, 0) = [1 − β(t) − µ1]p1(r, t, A1) + p0(r, t, A0),(2.6)

p3(r, t, 0) = (1 − µ2)p2(r, t, A2),(2.7)

p0(r, t, 0) = β(t)p1(r, t, A1).(2.8)
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Equation (2.6) expresses the assumption that at the end of theG1 phase a fractionβ(t) of the
cells goes into quiescence, and a fractionµ1 goes into apoptosis, while the remaining fraction
of cells at the end of theG1 phase as well as the cells at the end of the quiescence period enter
theS phase. The functionβ(t) is viewed as a control function,0 < β(t) < 1 − µ1.

We introduce the total density of each population of cells:

Qi(r, t) =

∫ Ai

0

pi(r, t, si)dsi (i = 0, 1, 2, 3)

and formally setQ4(r, t) = p4(r, t). Then

Q(r, t) ≡
3∑

i=1

Qi(r, t)

is the combined density of cells in phasesG1, S, G2 andM . Later on we shall see how the
functionβ(t) relates to the signals from the microenvironment which are relayed to the cell by
means of APC (in case of overpopulation) and SMAD (in case of hypoxia). We shall then view
β(t) as a functional

(2.9) β(t) = K[w, Q](t).

Although the controlβ shall generally depend on(r, t), rather than ont alone, we assume here,
for simplicity, thatβ depends only ont.

We assume that the total density of cells, live and dead, is constant, and for simplicity take
the constant to be1, so that,

(2.10)
4∑

i=0

Qi(r, t) = const.= 1.

We integrate each of the equations in (2.1) and (2.2) oversi ∈ (0, Ai) and sum up the
resulting equations and (2.3). Using (2.5)–(2.8) we find that all the boundary integrals resulting
from integrating∂pi/∂si cancel out, so that

(2.11)
4∑

i=0

[
∂Qi

∂t
+ div(Qi~v)

]
=

3∑

i=1

λi(w)Qi − λ0Q0 − λ4Q4 ≡ H( ~Q, w).

Assuming that~v is radially symmetric, we can write it in the form

~v = v~er where~er =
x

r
,

so that

div(~vp) =
1

r2

∂

∂r
(r2vp) if p = p(r);

note thatv(0) = 0.
From (2.10), (2.11) we then obtain

(2.12) div~v =
1

r2

∂

∂r
(r2v) = H( ~Q, w).

Finally we assume that the oxygen concentrationw(r, t) satisfies the diffusion equation with
a positive bounded sourceh,

(2.13) −∆w + Qw = h, h(r, t) = γ(r, t)(w − w) in Ωt;

wherew is the average oxygen concentration in a healthy tissue and the sourceh represents
oxygen transported from the vasculature into the tissue. Weprescribe the boundary condition

(2.14) w = w on∂Ωt
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and a free boundary condition, which says that the boundary moves with the velocity of the
cells,

(2.15)
dR(t)

dt
= v(r)

∣∣∣
r=R(t)

.

We also prescribe initial data

(2.16) pi

∣∣∣
t=0

= pi0(r, si) (i = 0, 1, 2, 3), p4

∣∣∣
t=0

= p40(r), R
∣∣∣
t=0

= R0 > 0

that are nonnegative, namely,

inf
0<r<R0,0<s<Ai

pi0(r, s) ≥ 0 (0 ≤ i ≤ 3), inf
0<r<R0

p40(r) ≥ 0.

The following global existence and uniqueness result for radially symmetric solutions is
established in Friedman [9] in caseβ is a function ofw andQ,

(2.17) β = K(w, Q).

Theorem 2.1. If the pi0 belong toC1(Ω0 × [0, Ai]), 0 ≤ i ≤ 3, p40 belongs toC1(Ω0), pi0

(0 ≤ i ≤ 4) satisfy (2.5)–(2.10), andλi(z) (1 ≤ i ≤ 3) andK(z, Q) belong toC1 for z ∈ R
1,

Q ∈ [0, 1] andγ(r, t) is a continuous function forr ≥ 0, t ≥ 0, then there exists a unique

radially symmetric solution(pi, w, v, R) of (2.1)–(2.10), (2.12)–(2.16) withR(t) in C1[0,∞),
andpi ≥ 0 (0 ≤ i ≤ 4).

Remark 2.1. In this paper we do not specify the coefficientγ(r, t) in the source termh in the
oxygen equation (2.13);γ depends directly on the blood vasculature. In a healthy normal tissue,
γ is such that it ensures that the oxygen levelw is typically above the necrotic levelw∗, so that
the cells continue to grow during the cell cycle phasesG1, S, G2, M . Hence, the assumption
(2.4) holds in healthy normal tissue. We expect that as long as the cells have full control over
β(t) and (2.4) holds, the radiusR(t) will remain bounded and0 < c ≤ R(t) ≤ C < ∞ will
hold for all t > 0, with C/c “fairly close” to 1, at least for some initial data. However,if the
controlβ(t) is lost (in the sense thatβ ≡const.) through gene mutations, then a tumor may
develop. Whether the tumor will continue to grow (beyond a few millimeters) will depend on
the tumor ability to induce angiogenesis, that is, the formation of new blood vessels moving
into the tumor, thus providing it with oxygen (and other nutrients). The effect of angiogenesis
is expressed by takingγ = γ(r, t, e) in (2.13) wheree is the density of the endothelial cells.
Without angiogenesis, the oxygen level in the core of the tumor will decrease below the necrotic
levelw∗ and then (2.4) will no longer hold there, and instead we shallhave

λj(w) < 0 if w < w∗ (j = 1, 2, 3).

Angiogenesis has been modeled in the literature quite extensively; see [13], [14] and the ref-
erences therein. In this paper we do not include angiogenesis explicitly; instead we assume it
implicitly by imposing the condition (2.4) throughout the growing tumor. Although we assume
that the oxygen concentration is above the necrotic levelw∗, this concentration may still be
hypoxic in some regions within the tissue. We shall prove that if the controlβ(t) is lost (more
precisely, ifβ(t) ≡const. and the constant is small) and (2.4) holds, then the radiusR(t) of the
tumor will grow to∞ ast → ∞. We can interpret this result as the onset on cancer.

It is interesting to note (as proved in [11]) that, without angiogenesis (i.e., ifh ≡ 0 in (2.13)),
even ifw∗ = 0, that is, even if

λj(w) > 0 for w > 0, λj(0) = 0, (j = 1, 2, 3),

then alreadyR(t) ≤ C < ∞ for all t > 0.
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3. β(t) CONSTANT

For simplicity we first consider the case

(3.1) λ1(w) = λ2(w) = λ3(w) = const. = λ,

The case whereλj = λj(w) (for i = 1, 2, 3) will be considered in Section 6. It is convenient
to introduce the function

p(r, t, s) =






(1 − µ2)p2(r, t, s), 0 ≤ s ≤ A2,

p3(r, t, s − A2), A2 ≤ s ≤ A2 + A3,

p1(r, t, s − A2 − A3), A2 + A3 ≤ s ≤ A1 + A2 + A3 ≡ A,

(3.2)

so that

(3.3) Q(r, t) =
1

1 − µ2

∫ A2

0

p(r, t, s)ds +

∫ A

A2

p(r, t, s)ds.

By conservation of mass,

∂p

∂t
+

∂p

∂s
+ div(p~v) = λp for 0 < s < A ,(3.4)

∂p0

∂t
+

∂p0

∂s
+ div(p0~v) = −λ0p0 for 0 < s < A0 ,(3.5)

∂p4

∂t
+ div(p4~v) = µ1p(r, t, A) +

µ2

1 − µ2
p(r, t, A2) − λ4p4(3.6)

with

p(r, t, 0) = (1 − µ2)[1 − µ1 − β(t)]p(r, t, A) + (1 − µ2)p0(r, t, A0),(3.7)

p0(r, t, 0) = β(t)p(r, t, A).(3.8)

Note thatp(r, t, s) is continuous ins, 0 ≤ s ≤ A. It is natural to assume that the cell remains
in quiescent mode for relatively long time, so that

(3.9) A0 > A,

but, mathematically, this assumption is not necessary. We introduce the volume integrals

p̂(t, s) = 4π

∫ R(t)

0

r2p(r, t, s)dr,

p̂0(t, s) = 4π

∫ R(t)

0

r2p0(r, t, s)dr,

p̂4(t) = 4π

∫ R(t)

0

r2p4(r, t)dr.

Integrating (3.4)–(3.6) overΩt and using (2.15), we obtain

∂p̂

∂t
+

∂p̂

∂s
= λp̂ for 0 < s < A ,

∂p̂0

∂t
+

∂p̂0

∂s
= −λ0p̂0 for 0 < s < A0 ,

∂p̂4

∂t
= µ1p̂(t, A) +

µ2

1 − µ2
p̂(t, A2) − λ4p̂4.

From (3.7), (3.8) we also get

p̂(t, 0) = (1 − µ2)[1 − µ1 − β(t)]p̂(t, A) + (1 − µ2)p̂0(t, A0),(3.10)

p̂0(t, 0) = β(t)p̂(t, A).(3.11)
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Solving the equations for̂p, p̂0 along the characteristics, we obtain

p̂(t + s, s) = eλsp̂(t, 0), for t > 0, 0 < s < A,(3.12)

p̂0(t + s, s) = e−λ0sp̂0(t, 0), for t > 0, 0 < s < A0,(3.13)

Define

Q̂(t) =

∫ A

0

p̂(t, s)ds ≡
∫ A

0

∫ R(t)

0

4πr2p(r, t, s)drds;

then

Q̂(t) ≤ total mass of cells in phasesG1, S, G2, M ≤ 1

1 − µ2
Q̂(t).

We also define

Q̂0(t) =

∫ A0

0

p̂0(t, s)ds ≡
∫ A

0

∫ R(t)

0

4πr2p0(r, t, s)drds

as the total mass of cells in phasesG0. If t > A + A0, then, by (3.12), (3.10) and (3.13),

Q̂(t) =

∫ A

0

p̂(t, s)ds

=

∫ A

0

eλsp̂(t − s, 0)ds

= (1 − µ2)

∫ A

0

eλs
(
p̂(t − s, A)[1 − µ1 − β(t − s)] + p̂0(t − s, A0)

)
ds

= (1 − µ2)

∫ A

0

eλsp̂(t − s, A)[1 − µ1 − β(t − s)]ds

+(1 − µ2)

∫ A

0

eλse−λ0A0 p̂0(t − s − A0, 0)ds,

or, by (3.11),

(3.14)
Q̂(t) = (1 − µ2)

∫ A

0

eλsp̂(t − s, A)[1 − µ1 − β(t − s)]ds

+(1 − µ2)

∫ A

0

eλse−λ0A0β(t − s − A0)p̂(t − s − A0, A)ds.

We shall now assume that

(3.15) β(t) ≡ const.= β,

that is, the cells have no (viable) control atR1 over the decision whether to go into quiescent
state or to proceed to theS phase. Then, by (3.14), and (3.12), (3.13),

Q̂(t) = (1 − µ2)(1 − µ1 − β)eλA

∫ A

0

p̂(t − A, s)ds

+βe−λ0A0eλA

∫ A

0

(1 − µ2)p̂(t − A − A0, s)ds

= (1 − µ2)(1 − µ1 − β)eλAQ̂(t − A) + (1 − µ2)βe−λ0A0eλAQ̂(t − A − A0),

or,

(3.16) Q̂(t) = α1(β)Q̂(t − A) + α2(β)Q̂(t − A − A0)

whereα1(β) = (1 − µ2)(1 − µ1 − β)eλA, α2(β) = (1 − µ2)βe−λ0A0eλA.

We shall assume that

(3.17) (1 − µ1)(1 − µ2)e
λA > 1, (1 − µ1)(1 − µ2)e

−λ0A0eλA < 1.
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Lemma 3.1. Under the assumption (3.17) there exists a uniqueβ∗, 0 < β∗ < 1−µ1, such that
(i) if 0 ≤ β < β∗, then

(3.18) lim
t→∞

Q̂(t) = ∞;

(ii) if β∗ < β ≤ 1 − µ1, then

(3.19) lim
t→∞

Q̂(t) = 0.

Proof. Clearlyα1(β) + α2(β) is monotonically decreasing inβ, and from (3.16) it follows that

α1(β) + α2(β) = (1 − µ2)
(
(1 − µ1 − β)eλA + βe−λ0A0eλA

){
> 1 if β = 0,

< 1 if β = 1 − µ1.

Hence there is a uniqueβ∗ such that

α1(β) + α2(β)






> 1 if 0 ≤ β < β∗,

= 1 if β = β∗,

< 1 if β∗ < β ≤ 1 − µ1.

Suppose0 ≤ β < β∗, so thatα1(β) + α2(β) = 1 + δ, δ > 0. Let

Mj = inf
j(A+A0)≤t<(j+1)(A+A0)

Q̂(t), j = 1, 2, 3, · · · .

Then, by (3.16),

Q̂(t) ≥ (1 + δ)M1 if 2(A + A0) ≤ t ≤ 2(A + A0) + A,

and, in particular,

Q̂(t) ≥ M1 for (A + A0) ≤ t ≤ 2(A + A0) + A.

Repeating this procedurek times, we obtain

Q̂(t) ≥ (1 + δ)M1 for 2(A + A0) ≤ t ≤ 3(A + A0)

if k is such thatkA > (A + A0). Taking “inf” over the interval[2(A + A0), 3(A + A0)] it
follows thatM2 ≥ (1+δ)M1. SimilarlyMj ≥ (1+δ)jM1 and thereforeMj → ∞ asj → ∞.

The caseβ∗ < β ≤ 1−µ1 is similar if we replace “inf” by “ sup” and1 + δ by 1− δ.

Theorem 3.2. Assume that (3.17) holds. (i) If0 ≤ β < β∗, then

R(t) → ∞ ast → ∞;

(ii) if β∗ < β ≤ 1 − µ1, then

R(t) → 0 ast → ∞.

Proof. If 0 ≤ β < β∗, then (3.18) holds, and since

Q̂(t) = 4π

∫ A

0

(∫ R(t)

0

r2p(r, t, s)dr
)
ds

= 4π

∫ R(t)

0

r2
( ∫ A

0

p(r, t, s)ds
)
dr

≤ 4π

∫ R(t)

0

r2dr =
4π

3
R3(t),

we conclude thatR(t) → ∞ ast → ∞.
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In caseβ∗ < β ≤ 1 − µ1, we need, in addition to (3.19), to estimateQ̂0(t) andp̂4(t). We
begin withQ̂0. By (3.13), (3.8),

Q̂0(t) =

∫ A0

0

p̂0(t, s)ds

=

∫ A0

0

e−λ0sp̂0(t − s, 0)ds (assuming thatt ≥ A0),

=

∫ A0

0

e−λ0sβ(t − s)p̂(t − s, A)ds.

We takek such thatkA < A0 ≤ (k + 1)A. Then, by (3.8), (3.12),

Q̂0(t) =

∫ A0

0

p̂0(t, s)ds

<

k∑

j=0

∫ (j+1)A

jA

e−λ0sβ(t − s)p̂(t − s, A)ds

=

k∑

j=0

∫ (j+1)A

jA

e−λ0sβ(t − s)eλAp̂(t − s − A, 0)ds

=

k∑

j=0

∫ (j+1)A

jA

e−λ0sβ(t − s)eλAe−λ(s−jA)p̂(t − A − jA, s − jA)ds

≤
k∑

j=0

(1 − µ1)e
λAQ̂

(
t − (j + 1)A

)
,

so that, by Lemma 3.1,

(3.20) lim
t→∞

Q̂0(t) = 0.

We next estimatêp4(t):

p̂4(t) = p̂4(0)e−λ4t + µ1

∫ t

0

e−λ4(t−τ)p̂(τ, A)dτ +
µ2

1 − µ2

∫ t

0

e−λ4(t−τ)p̂(τ, A2)dτ

≡ I1 + I2 + I3.

ClearlyI1 goes to zero ast → ∞. Next, by (3.12),

I2 = µ1

[t/A]+1∑

j=0

∫ (j+1)A

jA

e−λ4(t−τ)p̂(τ, A)dτ

≤ µ1

[t/A]+1∑

j=0

e−λ4t+λ4(j+1)A

∫ (j+1)A

jA

p̂(τ, A)dτ

= µ1

[t/A]+1∑

j=0

e−λ4t+λ4(j+1)A

∫ (j+1)A

jA

eλ(τ−jA)p̂(jA, A + jA − τ)dτ.

By Lemma 3.1, for any smallε > 0, there is aJ = J(ε) sufficiently large such that

Q̂(jA) < ε for all j ≥ J.
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Then

I2 ≤ µ1

J∑

j=0

e−λ4t+λ4(j+1)AeλAQ̂(jA) + εµ1

[t/A]+1∑

j=J+1

e−λ4t+λ4(j+1)AeλA

≤ µ1

J∑

j=0

e−λ4t+λ4(j+1)AeλAQ̂(jA) + εµ1e
−λ4t eλ4([t/A]+3)A − 1

eλ4A − 1
eλA

and the last term is bounded by

εµ1
e3λ4A

eλ4A − 1
eλA.

Hence

lim sup
t→∞

I2(t) ≤ εµ1
e3λ4A

eλ4A − 1
eλA,

and, sinceε is arbitrary,limt→∞ I2(t) = 0. In a similar manner one can showlimt→∞ I3(t) =

0, so that

(3.21) lim
t→∞

p̂4(t) = 0.

Since

Q̂(t) + Q̂0(t) + p̂4(t) ≥ 4(1 − µ2)π

∫ R(t)

0

r2 · 1 dr =
4π

3
(1 − µ2)R

3(t),

we conclude from (3.19)–(3.21) that

lim
t→∞

R(t) = 0.

Remark 3.1. The arguments used in the proof of Lemma 3.1 show that ifβ = β∗, then

0 < lim inf
t→∞

Q̂(t) ≤ lim sup
t→∞

Q̂(t) < ∞.

Remark 3.2. The caseβ(t) ≡ const. may arise in a situation where the cell does not respond
to signals from its microenvironment, that is, when both APCand SMAD are mutated. In this
case, as explained in Remark 2.1, Theorem 3.2 (i) may be interpreted as the onset of cancer.

4. β(t) AS FREE CONTROL

In this section we continue to assume that (3.1) holds, deferring the case ofλj = λj(w)

for j = 1, 2, 3 to Section 5. We also assume that (3.17) holds and wish to showthat there is a
controlβ(t) that depends on the populationQ (or rather onQ̂) for which

(4.1) 0 < c ≤ R(t) ≤ C < ∞ for all t.

We assume for simplicity that

(4.2) A0 = mA, m integer≥ 1.

In order to defineβ(t), we choose any positive constantQ∗ and numbersβ, β such that

(4.3) 0 < β < β∗ < β < 1 − µ1.

Assuming thatβ(t) has already been determined fort < t0 whent0 = jA (j integer≥ 1), we
take

(4.4) β(t) =

{
β for t0 ≤ t < t0 + A if Q̂(t0) ≥ Q∗

β for t0 ≤ t < t0 + A if Q̂(t0) < Q∗.
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With this choice ofβ(t) we can then extend the solution of the free boundary problem for the
pi andR(t) to jA ≤ t ≤ (j + 1)A. If we setQ̂j = Q̂(jA), βj = β(jA) then, by (3.14),

(4.5) Q̂j = (1 − µ2)(1 − µ1 − βj−1)e
λAQ̂j−1 + (1 − µ2)βj−1−meλAe−λ0mAQ̂j−1−m

and

(4.6) βj =

{
β if Q̂j ≥ Q∗

β if Q̂j < Q∗
.

Define

Q̂min = min
(
(1 − µ2)(1 − µ1 − β)eλAQ∗, (1 − µ2)βeλAe−λ0mAQ∗, Q̂1, · · · , Q̂m+1

)
,

Q̂max = max
( (1 − µ2)βeλAe−λ0mA

1 − (1 − µ2)(1 − µ1 − β)eλA
Q∗,

(1 − µ2)(1 − µ1 − β)eλA

1 − (1 − µ2)βeλAe−λ0mA
Q∗,

(1 − µ2)(1 − µ1 − β)eλAQ∗ + (1 − µ2)βeλAe−λ0mAQ∗, Q̂1, · · · , Q̂m+1

)
.

Note that with the choices ofβ andβ, we have

(1 − µ2)(1 − µ1 − β)eλA + (1 − µ2)βeλAe−λ0mA > 1,(4.7)

(1 − µ2)(1 − µ1 − β)eλA + (1 − µ2)βeλAe−λ0mA < 1.(4.8)

Lemma 4.1. Assume that (3.17) holds. Then

(4.9) Q̂min ≤ Q̂j ≤ Q̂max for 0 ≤ j < ∞.

Proof. We use induction onj. It is clear that (4.9) is valid for all1 ≤ j ≤ m + 1. Suppose
that (4.9) holds for up toj − 1 wherej ≥ m + 2. There are only four possible cases for
Q̂j−1, Q̂j−m−1:

i), Q̂j−1 ≥ Q∗, Q̂j−1−m ≥ Q∗;
ii), Q̂j−1 ≥ Q∗, Q̂j−1−m < Q∗;
iii), Q̂j−1 < Q∗, Q̂j−1−m < Q∗;
iv), Q̂j−1 < Q∗, Q̂j−1−m ≥ Q∗.
In case i) we have, by (4.5), (4.6),

Q̂j = (1 − µ2)(1 − µ1 − β)eλAQ̂j−1 + (1 − µ2)βeλAe−λ0mAQ̂j−1−m,

so that, using (4.8),

Q̂j ≤
{
(1 − µ2)(1 − µ1 − β)eλA + (1 − µ2)βeλAe−λ0mA

}
Q̂max < Q̂max,

whereas, by the two inequalities of case i),

Q̂j ≥
{
(1 − µ2)(1 − µ1 − β)eλA + (1 − µ2)βeλAe−λ0mA

}
Q̂∗ > Q̂min.

In case ii) we have, by (4.5), (4.6),

Q̂j = (1 − µ2)(1 − µ1 − β)eλAQ̂j−1 + (1 − µ2)βeλAe−λ0mAQ̂j−1−m,

so that, by the inequality(1− µ2)βeλAe−λ0mAQ∗ ≤
{
1 − (1 − µ2)(1 − µ1 − β)eλA

}
Q̂max,

we get

Q̂j ≤ (1 − µ2)(1 − µ1 − β)eλAQ̂max + (1 − µ2)βeλAe−λ0mAQ∗ ≤ Q̂max.

On the other hand, by the inequalities of case ii),

Q̂j ≥ (1 − µ2)(1 − µ1 − β)eλAQ̂∗ ≥ Q̂min.
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Case iii) can be treated in a similar way as case i) using (4.8), and case iv) is similar to
Case ii).

Theorem 4.2. Assume that (3.17) holds andβ(t) is defined by (4.4). ThenR(t) satisfies (4.1).

Proof. Using Lemma 4.1, one can establish the upper and lower boundsfor Q̂(t) for all time
0 < t < ∞. From the lower bound on̂Q(t) we derive a positive lower bound onR(t). Using
arguments similar to those in the proof of Theorem 3.2 we can also establish upper bounds on
Q̂0(t) andp̂4(t), and thereforeR(t) must also be bounded from above.

Remark 4.1. The control function used in Theorem 4.2 depends on the totalpopulation of
cells, Q̂, in the tissue. If APC can control any situation of overpopulation, then, according to
Theorem 4.2, it can ensure that the tissue{r < R(t)} will remain bounded, without actually
dying (i.e., withR(t) ≥ c > 0). From the oxygen equation (2.13) and the boundary condition
(2.14), it is clear that there is a one-to-one correspondence betweenQ andw. Hence we can
express the strategy (4.4) also in terms of thew(r, t), t ≤ t0. We conclude that if APC is
mutated, but SMAD is healthy normal so that it can sense the oxygen level and use this to
controlR(t), then indeed it may forceR(t) to satisfy (4.1).

5. THE CASE OF VARIABLE λj(w)

In this section we extend the results of Sections 3, 4 to the case whereλj(w) are functions
of w, and

(5.1) λj(w) belong toC1[0,∞) for j = 1, 2, 3.

In this case
∂p̂

∂t
+

∂p̂

∂s
= λ̃p̂

where
λ− ≡ min

1≤j≤3
min
(r,t)

λj(w(r, t)) ≤ λ̃ ≤ max
1≤j≤3

max
(r,t)

λj(w(r, t)) ≡ λ+.

It follows that

(5.2)
∂p̂

∂t
+

∂p̂

∂s
≥ λ−p̂,

and

(5.3)
∂p̂

∂t
+

∂p̂

∂s
≤ λ+p̂.

Analogously to (3.17) we assume that

(5.4) (1 − µ1)(1 − µ2)e
λ
−

A > 1, (1 − µ1)(1 − µ2)e
−λ0A0eλ

−
A < 1

and set

(5.5) α−
1 (β) = (1 − µ2)(1 − µ1 − β)eλ

−
A, α−

2 (β) = (1 − µ2)βe−λ0A0eλ
−

A.

Then there exists a uniqueβ∗
−, 0 < β∗

− < 1 − µ1 such that

α−
1 (β) + α−

2 (β)






> 1 if 0 ≤ β < β∗
−,

= 1 if β = β∗
−,

< 1 if β∗
− < β ≤ 1 − µ1.

Using (5.2) we derive the inequalitieŝp(t, s) ≥ p̂(t − s, 0)eλ
−

s for 0 ≤ s ≤ A, p̂(t − s, A) ≥
p̂(t − A, s)eλ

−
(A−s) for 0 ≤ s ≤ A, and then, analogously to (3.16),

Q̂(t) ≥ α−
1 (β)Q̂(t − A) + α−

2 (β)Q̂(t − A − A0).
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As in the proof of Lemma 3.1, we can now show that (3.18) holds if β < β∗
−, so thatR(t) → ∞

ast → ∞.
Similarly, if we assume that

(5.6) (1 − µ1)(1 − µ2)e
λ+A > 1, (1 − µ1)(1 − µ2)e

−λ0A0eλ+A < 1

and set

(5.7) α+
1 (β) = (1 − µ2)(1 − µ1 − β)eλ+A, α+

2 (β) = (1 − µ2)βe−λ0A0eλ+A,

then exists a uniqueβ∗
+, 0 < β∗

+ < 1 − µ1 such that

α+
1 (β) + α+

2 (β)





> 1 if 0 ≤ β < β∗
+,

= 1 if β = β∗
+,

< 1 if β∗
+ < β ≤ 1 − µ1.

Using (5.3) we can then derive the inequality

Q̂(t) ≤ α+
1 (β)Q̂(t − A) + α+

2 (β)Q̂(t − A − A0),

from which we deduce that, ifβ∗
+ < β < 1 − µ1, then (3.19) holds. One can next establish

(3.20) and (3.21) as before, and thus conclude thatR(t) → 0 if t → ∞.
We summarize:

Theorem 5.1. (i) If (5.4) holds and0 < β < β∗
−, then

R(t) → ∞ if t → ∞.

(ii) If (5.6) holds andβ∗
+ < β < 1 − µ1, then

R(t) → 0 if t → ∞.

As explained in Remark 2.1, case (i) may be interpreted as theonset of cancer.

Remark 5.1. Note that, in general,β∗
− < β∗

+. It is not clear howR(t) behaves ifβ is a constant
satisfyingβ∗

− < β < β∗
+.

We next turn to extension of Theorem 4.2, assuming that both (5.3) and (5.4) are satisfied.
We defineβ(t) as in (4.4), but with0 < β < β∗

− ≤ β∗
+ < β < 1 − µ1, so that

(1 − µ1)(1 − µ2 − β)eλ
−

A + (1 − µ2)βe−λ0A0eλ
−

A > 1,(5.8)

(1 − µ1)(1 − µ2 − β)eλ+A + (1 − µ2)βe−λ0A0eλ+A < 1.(5.9)

Lemma 4.1 then extends to this case providedQ̂min andQ̂max are replaced by

Q̂min = min
(
(1 − µ2)(1 − µ1 − β)eλ

−
AQ∗,

(1 − µ2)βeλ
−

Ae−λ0mAQ∗, Q̂1, · · · , Q̂m+1

)
,

Q̂max = max
( (1 − µ2)βeλ+Ae−λ0mA

1 − (1 − µ2)(1 − µ1 − β)eλ+A
Q∗,

(1 − µ2)(1 − µ1 − β)eλ+A

1 − (1 − µ2)βeλ+Ae−λ0mA
Q∗,

(1 − µ2)(1 − µ1 − β)eλ+AQ∗ + (1 − µ2)βeλ+Ae−λ0mAQ∗, Q̂1, · · · , Q̂m+1

)
.

We can now proceed as before to derive the following theorem.

Theorem 5.2. Assume that (5.4), (5.6) hold andβ(t) is defined by (4.4) withβ, β as in (5.8),
(5.9). Then

0 < c ≤ R(t) ≤ C < ∞ for all t.
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Remark 5.2. In the model presented in this paper we have not included the death of quiescent
cells in the equation forp4; this can be done by adding some average ofp0(r, t, s) with respect
to s. Adding such a term does not change the results of Sections 4,5.

6. NUMERICAL SIMULATIONS

The proof of Theorem 5.2 provides an upper bound forC/c, that is, an upper bound on
the oscillations ofR(t). In homeostasisR(t) is nearly stationary. In this section we explore
numerically how the choice of the controlβ(t) can be improved to achieve nearly stationary
R(t). For simplicity we consider the caseλj(w) = λ for j = 1, 2, 3. We take the parameter
values:

λ = ln 2 day−1 ≈ 0.693 day−1, λ0 =
1

10
ln 2 day−1 ≈ 0.0693 day−1,

which corresponds to cell cycle period of 24 hours [2];

A = 1 day, A1 = A2 = A3 =
1

3
day, A0 = 5 day;

λ0A0 =
1

2
λA, mλ0 =

1

2
ln 2 ≈ 0.347, and m = 5.

Since, according to [3], death rate is approximately1
2 of proliferation rate, we take

µ1 = µ2 =
1

5
.

We finally choose the clearing rate of death cells to be ([8])

λ4 =
1

2
day−1.

Note that (3.15) is actually satisfied forµ1 = µ2 = µ in the range0.16 < µ < 0.29.

We shall simulate the solution of the free boundary problem for the initial values

p0(r, s, 0) =
1

6 1
12 + 7

6 log(2)
(− cos(6πs) + 1), 0 ≤ s ≤ A0

p(r, s, 0) =
1

6 1
12 + 7

6 log(2)
(− cos(6πs) + 1), 0 ≤ s ≤ A.

The subsequent considerations, however, can be applied to any initial data. In the numeri-
cal simulations we use finite difference upwind discretization in spacex ands (dx = ds =

A1/128) with forward Euler method in timet (dt = 0.5dx) to solve the hyperbolic type equa-
tions (2.1)–(2.3) with the boundary conditions (2.5)–(2.8). The velocity−→v is obtained by mid-
point integration ofH : −→v = 1

r2

∫ r

0
r2H(

−→
Q, ω) (whereH(

−→
Q, ω) is given by (2.11)) and (2.10)

through several numerical integrations ofpi.

We are going to illustrate several control strategies. We begin with the choiceβ(t) =const.=
β. According to Theorem 3.2, with

β∗ =
7

20(2 −
√

2)
≈ 0.6,

if β < β∗ thenR(t) → 0 ast → ∞ and ifβ > β∗ thenR(t) → 0 ast → ∞. This is illustrated
in Figure 3 withβ(t) = β = 0.2, 0.4, 0.6, and0.8.

Forβ = 0.6, the trend for the limit ofR(t) takes longer time.
The choiceβ(t) =const. is of course not robust. The derive a robust control wefollow the

proof of Theorem 4.2, but first chooseβ(t) for 0 ≤ t ≤ t0 = A0 to be different fromβ∗ in
order to be in a non-stationary situation att = t0; we takeβ(t) = 0.5 for 0 ≤ t ≤ t0.

Figure 4 shows the results for different constantsQ∗. The asymptotic behavior ofR(t) at
large time strongly depends on the choiceQ∗. The controlβ makesH fluctuate around zero
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FIGURE 3.
The evolution ofR(t) w.r.t (a)β = 0.2 (b) β = 0.4 (c) β = 0.6 (d) β = 0.8.

andR(t) fluctuate around a constant radius after certain timeT . The radiusR(t) stabilizes for
T > 75 whenQ∗ = 0.8 and forT > 40 whenQ∗ = 1.4.

Although the strategy adapted in the proof of Theorem 4.2 is robust, we can do better by an
adaptive control approach, as illustrated in Figure 5.

Instead of fixingQ∗ in the previous example, we chooseQ∗ = Q̂(jA). The control is chosen
as

(6.1) β(t) =

{
β if Q̂(t) ≥ Q∗

β if Q̂(t) < Q∗

wherejA ≤ t ≤ (j + 1)A. Due to the initial controlβ(t) = 0.5 for t < A0 and the control at
later time, the radius first grows and then stabilizes. The radius does not fluctuate as frequently
as in the previous examples. A completely different approach to satisfyingR(t) is to choose
β(t) such thatH ≡ 0, so thatR(t) ≡const. The problem with this approach is thatβ(t) tends in
general to exit the interval(0, 1−µ−1). Nonetheless one can achieve an improved performance
hybrid method which combines this strategy as long asβ(t) remains in the interval(0, 1− µ1),
and then the adaptive control strategy of (6.1). This is illustrated in Figure 6 which shows that
R(t) stabilizes faster than in Figure 5.
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FIGURE 4.
The evolution ofR(t) for (a)Q∗ = 0.8(b) Q∗ = 1.0(c) Q∗ = 1.2(d) Q∗ = 1.4.
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FIGURE 5.
The evolution ofR(t) for adaptiveQ∗.
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FIGURE 6.
The evolution ofR(t) for adaptiveQ∗.

7. CONCLUSION

The growth or shrinkage of a tissue, taken as a sphere{r < R(t)}, depends on a decision that
individual cells make whether to proceed directly from the restriction pointR1 in theG1 phase
to theS phase, or whether to go first into quiescent state. If the cells are healthy normal, then
when the microenvironment is overpopulated (or hypoxic), and if the cells are endowed with
full control atR1, β = β(t) in some intervalβ ≤ β(t) ≤ β at R1, then they can act in a way
that will not increase or decrease the tissue’s diameter by more than a multiplicative constant.
Simulations show that this control when chosen in an adaptive manner can renderR(t) nearly
stationary after a relatively short time. However if suppressor genes, that are designed to block
proliferation when the microenvironment is unfavorable (such as APC and SMAD) are mutated,
then the radiusR(t) may increase to∞ (this could be interpreted as the onset of cancer in the
presence of angiogenesis, as explained in Remark 2.1), or decrease to0 (i.e., the tissue dies
out).

These results are based on a multiscale model with two time scales: the usual timet, and the
running time of cells in each phase of the cell cycle. The model equations are based on mass
conservation for cell populations and on a diffusion equation for the oxygen. It was assumed
that all the cells act in unison atR1. However the results can be extended to two (or more)
populations of cells. For example, suppose one population of cells is healthy, and co-exists with
another population in which SMAD and APC are mutated so that all control atR1 is lost for
the latter population. In this case, againR(t) → ∞ under the assumption of Theorem 3.2 (i);
however under the conditions of Theorem 3.2 (ii),R(t) will remain bounded from below by a
positive constant (rather than go to zero) due to the healthycells of the tissue.

The present model makes the implicit assumption that soon after the tumor was initiated (due
to mutations of SMAD and APC) it induces angiogenesis, and thus ensures continuous supply
of oxygen; see Remark 2.1. Future work should include angiogenesis directly by takingγ =

γ(r, t, e) in (2.13) wheree is the density of the endothelial cells, and allow theλj(w) to become
negative whenever the oxygen concentration is below the necrotic level. The mathematical
model for this situation should include additional differential equations for the concentration of
tumor angiogenetic factors and for proteolytic enzymes, and for densities of endothelial cells
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and macrophages; it should also included the effect of hapotaxis on the tumor cells as they
migrate into the stroma.
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upon agreement No. 0112050.
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