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Abstract. In a paper published posthumously P. S. Urysohn con-
structed a complete separable metric space that contains an isometric
copy of every complete separable metric space, nowadays referred to as
the Urysohn universal space. Here, we study various convexity proper-
ties of the Urysohn universal space and show that it has a finite ball
intersection property. We also show that Urysohn universal space is not
hyperconvex.

1. Introduction

It is well known that both l∞ and C[0, 1] are universal spaces. Indeed,
every separable metric space isometrically embeds in a Banach space l∞

(Fréchet embedding) and a theorem of Banach [4] states that every separable
metric space embeds isometrically in C[0, 1]. Here C[0, 1] is the separable
Banach space of continuous real-valued functions on the closed unit interval
equipped with the sup norm. However, the interest in the Urysohn space,
denoted by U, does not lie in its universality alone; it has the following finite
transitivity property: every isometry between finite subsets of U extends to
an isometry of U onto itself. More precisely, Urysohn proved the following
theorem.

Theorem 1.1 ([21]). Let X be a separable and complete metric space that
contains an isometric image of every separable metric space. Then X is
Urysohn universal if and only if it has the finite transitivity property.

For this reason U is called Urysohn universal, not just universal. In
[21] Urysohn also proved that U is unique, up to an isometry. It is worth
remarking that the Banach space C[0, 1] cannot be Urysohn universal since
every isometric bijection between Banach spaces is an affine map (see [5],
page 341).

In this paper we study various convexity properties of the Urysohn uni-
versal space U and show that it has a finite ball intersection property (The-
orem 3.4). We also note that Urysohn universal space is not hyperconvex
(Theorem 5.4). It is worth noting that Urysohn’s ideas have been extensively
explored in geometry and topology (see, for example, [12, 13, 17, 20, 22]).
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2. Urysohn’s construction

Urysohn’s original construction of U is published in full details in [21].
For the sake of completeness and accessibility we shall briefly go through
the construction. An alternative description of the Urysohn universal space
is given in [10, p. 20].

Urysohn first constructs a countable metric space U0 containing the im-
age of every countable metric space for which the distance between any two
points is rational. The metric completion of U0 (i.e., the unique complete
metric space that contain U0 as a dense subset) is then the Urysohn uni-
versal space U. We now proceed to the construction of the space U0. We
start with an arbitrary countable set U0={a1, a2, · · · , an, · · · } and define an
appropriate metric on it. To define such a metric, Urysohn first considers
the collection of all nonempty finite subsets of positive rational numbers.
Denote this collection by Q and enumerate it as follows. First, consider all
the elements of Q that consist of only one rational number and enumerate
them using all the natural numbers that are not divisible by 4. Now for
each p > 1, consider all the elements of Q that consist of p rational numbers
and enumerate them using all the natural numbers divisible by 2p, but not
divisible by 2p+1. In this way, every element of Q receives a unique label
Qn for some natural number n. Thus, we obtain

Q = {Q1,Q2, · · · ,Qn, · · · , }.

For example, Q1, Q2 and Q3 are single rational numbers; Q4, Q12 and Q20

consist of two rational numbers; Q8, Q24 and Q40 consist of three rational
numbers and so on. Hence each Qn can be written in the form

Qn = [r
(n)
1 , r

(n)
2 , · · · , r(n)pn ]

where r
(n)
1 , r

(n)
2 , · · · r(n)pn are the rational elements of Qn. It is clear that

p1 = 1 and pn < n, where pn is the cardinality of Qn. The metric on U0 is
defined in the following way. We begin by setting ρ(a1, a1) = 0. Suppose
for all i, k < n + 1, the nonnegative value ρ(ai, ak) are defined. For i ≤ pn,
consider the following two cases:

Case 1. At least one of the inequalities

(2.1) |r(n)i − r
(n)
k | ≤ ρ(ai, ak) ≤ r

(n)
i + r

(n)
k where i, k ≤ pn

is not satisfied. Urysohn calls such Qn to be incorrectly defined. In this case,
we define

ρ(an+1, aj) = max
i,k≤n

ρ(ai, ak),

for all j ≤ n.
Case 2. All of inequalities in (2.1) are satisfied. Urysohn calls such Qn

to be correctly defined. In this case, we define

ρ(an+1, aj) = min
λ≤pn
{ρ(aj , aλ) + r

(n)
λ }, for all j ≤ n.
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Urysohn shows that the distance function ρ is indeed a metric and that
U0 is universal space for all countable metric spaces having rational values
for their metrics.

Remark 2.1. Although it is not clear from Urysohn’s construction, the sets
of the form {r, r, r, . . . , r} and {r} should be considered the same. Indeed,
the following possibility illustrates that they must be considered the same.
Let Q1 = {2}, Q2 = {3}, Q3 = {4} and Q4 = {1/2, 1/2}. If such Q4 was al-
lowed to be considered as having two elements, then according to Urysohn’s
definition Q4 would be incorrectly defined. In this case, ρ(a5, aj) = 2 for all
j = 1, 2, 3, 4 and ρ(a3, a4) = 7, contradicting to the triangle inequality for
a3, a4, a5.

In [21] Urysohn proves many interesting properties of his space (U, ρ). The
following theorem will be used throughout this paper and will be referred
to as the Fundamental Theorem of Urysohn ([21, Theorem I])

Theorem 2.2. Given any finite subset x1, x2, · · · , xn of U and any positive
real numbers α1, α2, · · · , αn satisfying |αi −αj | ≤ ρ(xi, xj) ≤ αi +αj for all
i, j ≤ n, there exists y ∈ U such that ρ(y, xi) = αi for every i = 1, 2, · · · , n.

3. Convexity of the Urysohn universal space

We begin with the definitions of various types of convexities of metric
spaces. Throughout this section we denote byB(x, r) the closed ball centered
at x with radius r. Observe first that in any metric space (X, d), the triangle
inequality implies that if B(x, r) ∩ B(y, s) 6= ∅, then d(x, y) ≤ r + s for all
x, y ∈ X and r, s > 0. The space (X, d) is said to be metrically convex
provided that d(x, y) ≤ s + t implies B(x, r) ∩ B(y, s) 6= ∅ for all x, y ∈ X
and r, s > 0.

Clearly, if X is a geodesic metric space, then it is metrically convex.
Indeed, given x, y ∈ X and r, s > 0 with d(x, y) ≤ r + s, let γ ⊂ X be a
geodesic joining x and y. Since s > 0, we have d(x, y) < r, so there exists
z ∈ γ such that d(x, z) = r. Hence z ∈ B(x, r). On the other hand, since
d(x, y) = d(x, z)+d(z, y), we obtain d(y, z) = d(x, y)−d(x, z) ≤ r+s−r = s
so that z ∈ B(y, s). Thus, B(x, r) ∩B(y, s) 6= ∅.

As the Urysohn universal space is geodesic ([21, Theorem V]), we obtain
the following lemma.

Lemma 3.1. The Urysohn universal space (U, ρ) is metrically convex.

A stronger notion of convexity is the finite ball intersection property.

Definition 3.2. We say that a metric space (X, d) satisfies the finite ball
intersection property if for any finite points x1, x2, . . . , xn in X and for any
positive real numbers r1, r2, . . . , rn satisfying d(xi, xj) ≤ ri + rj , we have
n⋂
i=1

B(xi, ri) 6= ∅.
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In the context of metrically convex spaces the finite ball intersection prop-
erty can be restated as follows.

Remark 3.3. A metrically convex space X satisfies the finite ball inter-
section property if and only if for any finite collection of balls B(x1, r1),
B(x2, r2),. . . , B(xn, rn) we have

n⋂
i=1

B(xi, ri) 6= ∅ whenever B(xi, ri) ∩B(xj , rj) 6= ∅.

The above remark implies that in order to prove the finite ball intersection
property of a metrically convex space it is sufficient to consider only those
collections of balls B(x1, r1), B(x2, r2),. . . , B(xn, rn) in which no ball is
contained in another. That is, B(xi, ri) * B(xj , rj) andB(xj , rj) * B(xi, ri)
for each i 6= j. One can easily observe that the condition that B(xi, ri) *
B(xj , rj) and B(xj , rj) * B(xi, ri) implies |ri − rj | ≤ d(xi, xj). Indeed,
assuming that |ri − rj | > d(xi, xj), we obtain either ri > d(xi, xj) + rj or
rj > d(xi, xj)+ri. Due to symmetry we assume that ri > d(xi, xj)+rj . Then
for any y ∈ B(xj , rj) we have d(y, xi) ≤ d(y, xj)+d(xj , xi) < rj+ri−rj = ri
implying y ∈ B(xi, ri). Hence B(xj , rj) ⊂ B(xi, ri), which is the required
contradiction.

We conclude that in order to prove that a metrically convex space (X, d)
satisfies the finite ball intersection property it is enough to show that for
any finite points x1, x2, . . . , xn in X and for any positive real numbers

r1, r2, . . . , rn satisfying |ri−rj | ≤ d(xi, xj) ≤ ri+rj , we have

n⋂
i=1

B(xi, ri) 6= ∅.

Since the Urysohn universal space U is metrically convex (Lemma 3.1), the
following theorem is an easy consequence of Urysohn’s fundamental theorem
(Theorem 2.2).

Theorem 3.4. The Urysohn universal space (U, ρ) satisfies the finite ball
intersection property.

The fundamental theorem of Urysohn, mentioned above, implies that the
space U has a stronger form of finite ball intersection property. Namely, if
x1, x2, . . . , xn ∈ U and r1, r2, . . . , rn ∈ (0,+∞) satisfy |ri − rj | ≤ d(xi, xj) ≤

ri+rj , then there exists y ∈ U such that ρ(y, xi) = ri. That is,
n⋂
i=1

S(xi, ri) 6=

∅, where S(x, r) = {y ∈ U : ρ(x, y) = r} denotes a sphere centered at x and
of radius r. In this respect the following question arises naturally:

Question 3.5. Suppose that (X, d) is a metrically convex space. Under
what conditions on X

does

n⋂
i=1

B(xi, ri) 6= ∅ imply

n⋂
i=1

S(xi, ri) 6= ∅

whenever n ≥ 2 and |ri − rj | ≤ d(xi, xj) ≤ ri + rj?
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4. Hyperconvexity of metric spaces

A stronger form of the finite ball intersection property is the notion of
hyperconvexity.

Definition 4.1. A metric space (X, d) is said to be hyperconvex if⋂
i∈I

B(xi, ri) 6= ∅

for every collection B(xi, ri) of balls in X for which d(xi, xj) ≤ ri + rj .

The notion of hyperconvexity was first introduced by Aronszajn and Pan-
itchpakdi in [2], where it was shown that a metric space is hyperconvex if and
only if it is injective with respect to nonexpansive (1-Lipschitz) mappings.
Later Isbell [14] showed that every metric space has an injective hull, which
is the minimal hyperconvex space containing the given space as an isometric
subspace. Hyperconvex metric spaces are complete and connected [3]. The
simplest examples of hyperconvex spaces are the set of real numbers R, or
a finite-dimensional real Banach space endowed with the maximum norm.
While the Hilbert space l2 fails to be hyperconvex, the spaces L∞ and l∞

are hyperconvex. For the hyperconvexity of R-trees we refer the reader to
[15]. In [1] it is shown that there is a general “linking construction” yielding
hyperconvex spaces.

Lemma 4.2. The space c0 is not hyperconvex.

Proof. Recall that c0 is the space of null sequences equipped with the metric
d,

d(x, y) = supn |xn − yn|, where x = (xn) and y = (yn).

Consider the canonical basis en = (ekn) of c0, where ekn = 0 for k 6= n and
ekn = 1 for k = n. Let Bn = B(en, 1/2) be a ball centered at en and of radius
1/2. Then, d(ei, ej) = 1 ≤ 1/2+1/2 so that the condition in the definition of
hyperconvexity is satisfied. But intersection of these balls is empty. Indeed,

if x ∈
∞⋂
k=1

Bk, then x ∈ Bn for some n, yielding d(x, en) ≤ 1/2. But such a

sequence x cannot converge to 0 and hance x /∈ c0. Thus,
∞⋂
k=1

Bk = ∅ in c0

and, consequently, c0 is not hyperconvex. �

Lemma 4.3. Suppose that X is a separable metric space. If

∞⋂
i=1

B(xi, ri) 6= ∅

for every countable collection B(xi, ri) of balls in X with d(xi, xj) ≤ ri + rj,
then X is hyperconvex.
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Proof. Recall that a topological space is said to be Lindelöf if every open
cover has a countable subcover and that a metric space is Lindelöf if and only
if it is separable (see, for example, [18, p. 192]). Since X is separable, every
open cover of X has a countable subcover. Let B(xα, rα) be an uncountable
collection of balls in X with d(xi, xj) ≤ ri + rj . We need to show that⋂
α∈I

B(xα, rα) 6= ∅.

Assume that
⋂
α∈I

B(xα, rα) = ∅. Then X \
⋂
α∈I

B(xα, rα) = X. By the De

Morgan formulas,

X = X \
⋂
α∈I

B(xα, rα) =
⋃
α∈I

(
X \B(xα, rα)

)
.

Since X \B(xα, rα) is open, the collection {X \B(xα, rα), α ∈ I} is an open
cover of X. Since X is Lindelöf, there exists a countable subcover, say

X \B(x1, r1), X \B(x2, r2), . . . , X \B(xn, rn), . . .

That is, X =

∞⋃
k=1

(
X \B(xk, rk)

)
. Again, by De Morgan we have

X =

∞⋃
k=1

(
X \B(xk, rk)

)
= X \

∞⋂
k=1

B(xk, rk)

so that
∞⋂
k=1

B(xk, rk) = ∅. However, since ρ(xi, xj) ≤ ri + rj , our hypothesis

implies that

∞⋂
k=1

B(xk, rk) 6= ∅, which is a required contradiction.

�

As a corollary we obtain

Corollary 4.4. Suppose that (X, d) is a separable, metrically convex space.
If

∞⋂
k=1

B(xk, rk) 6= ∅

for any countable subset x1, x2, . . . , xn, . . . of X and any positive real num-
bers r1, r2, . . . , rn, . . . , satisfying |ri − rj | ≤ d(xi, xj) ≤ ri + rj for all i, j =
1, 2, . . . , then X is hyperconvex.

5. Isbell’s Hyperconvex Hull

Isbell in [14] introduced injective envelope of a metric space, called the
hyperconvex hull of the space. In what follows we give some of Isbell’s ideas
(see, also, [7, 8, 16]). Let (M,d) be a metric space. Given x ∈ M , let
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fx : M → [0,∞) be defined by fx(y) = d(x, y). Using the triangle inequality
one can easily show (cf. [9]) that

d(x, y) ≤ fa(x) + fa(y) and fa(x) ≤ d(x, y) + fa(y)

for any x, y, a ∈ M . Furthermore, if we let f : M → [0,∞) be such that
d(x, y) ≤ f(x) + f(y) for any x, y ∈ M , and if f(x) ≤ fa(x) for all x ∈ M
and for some a ∈M , then fa = f .

Let A be any subset of M . We say that a function f : A → [0,∞)
is extremal if d(x, y) ≤ f(x) + f(y) for all x, y ∈ A and if f is pointwise
minimal. That is, if g : A → [0,∞) is another function with the property
that d(x, y) ≤ g(x) + g(y) for all x, y ∈ A and g(x) ≤ f(x) for all x ∈ A,
then we have f = g. It is not difficult to see that every extremal function is
non-negative and 1-Lipschitz.

Definition 5.1. Let A be a nonempty subset of M . The injective envelope
of A, denoted by h(A), is the set of all extremal functions defined on A. In
other words,

h(A) = {f : A→ [0,∞) : d(x, y) ≤ f(x)+f(y) and f is pointwise minimal}

The distance function ρ(f, g) = sup
x∈A

d(f(x), g(x)) defines a metric on h(A)

and the map e : A→ h(A), defined by e(a) = fa, is an isometry. Indeed,

ρ(e(a), e(b)) = sup
x∈A
|fa(x)− fb(x)| = sup

x∈A
|d(a, x)− d(b, x)| = d(a, b).

Thus, one can identify the subset A with the subspace e(A) of h(A). Fur-
thermore, we have the following extension property [14]. Let r : A→ [0,∞)
be such that d(x, y) ≤ r(x) + r(y) for all x, y ∈ A. Then there exists
R : M → [0,∞) which extends r and such that d(x, y) ≤ R(x) + R(y) for
all x, y ∈ M . Additionally, there exists an extremal function f defined on
M such that f(x) ≤ R(x) for all x ∈ M . Aronszajn and Panitpacti proved
the following two criteria of injectivity of metric spaces ([2]).

a) A metric space M is injective if and only if it is an absolute 1-
Lipschitz retract.

b) A metric space M is injective if and only if it is hyperconvex.

In the following we list some properties of h(A) (cf. [9]).

(1) If f ∈ h(A), then it satisfies |f(x)− f(y)| ≤ d(x, y) ≤ f(x) + f(y).
(2) If A is compact, then h(A) is compact.
(3) h(A) is hyperconvex.
(4) If A ⊂ B ⊂ h(A), then h(B) is isometric to h(A).

Following is a well known example which shows that hyperconvex hull of
a set does not have to be unique.

Example 5.2. Consider the hyperconvex space R2 with the maximum norm
and take A = {(0, 0), (0, 1)}. Then the sets

h1(A) = {(x, y) ∈ R2 : x = y, 0 ≤ x ≤ 1 }
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and

h2(A) = {(x, y) ∈ R2 : x = y, 0 ≤ x ≤ 1/2 }∪{(x, y) ∈ R2 : x = 1−y, 1/2 ≤ x ≤ 1 }
are both hyperconvex hulls of A.

The following proposition is due to H. Herrlich ([11, p. 187]).

Proposition 5.3. l∞, the space of all real valued bounded sequences with
the sup metric is the hyperconvex hull of its subspace c0, consisting of all
sequences converge to zero.

Herrlich’s result implies that a hyperconvex hull of a separable metric
space need not to be separable since h(c0) = l∞. Furthermore, Cohen
proved the existence and uniqueness of a hyperconvex hull for any Banach or
normed space over R, and showed that an injective Banach space is linearly
isometric to a function space C(K), where K is a compact Hausdorff and
extremely disconnected ([6]). If C(K) is separable, then K is metrizable
and hence discrete and first countable, thus even finite. In fact, C(K) = l∞n
is finite dimensional, where n = |K|.

For more on hyperconvex hulls, see [7] ,[8] and [16]. In particular, for
hyperconvex hulls of normed spaces, we refer the reader to [19]. The next
theorem follows from the results of Herrlich and Cohen mentioned above.

Theorem 5.4. The Urysohn universal space U is not hyperconvex.

Proof. Suppose that U is hyperconvex. Then the separable infinite dimen-
sional space l2, which is not hyperconvex, embeds isometrically into U.
Hence h(l2) embeds isometrically in h(U) = U. But since h(l2) is not sepa-
rable, it can not isometrically embed into U, a contradiction. �
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