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Abstract

Shapiro’s lethargy theorem [48] states that if {An} is any non-trivial linear
approximation scheme on a Banach space X, then the sequences of errors of best
approximation E(x,An) = infa∈An ∥x− an∥X may decay almost arbitrarily slowly.
Recently, Almira and Oikhberg [11, 12] investigated this kind of result for general
approximation schemes in the quasi-Banach setting. In this paper, we consider the
same question for F -spaces with non decreasing metric d. We also provide applica-
tions to the rate of decay of s-numbers, entropy numbers and slow convergence of
sequences of operators.
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§1. Motivation

A famous theorem by Kakutani [30] states that a topological vector space is metrizable if
and only if it contains a countable basis of neighborhoods. Furthermore, if the topologi-
cal vector space X admits a compatible metric d then it also admits an equivalent metric
d∗ which is translation invariant. Thus, we assume in all what follows that our metrics
are translation invariant. Recall that a metric vector space (X, d) is named an F -space
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if and only if it is complete. There are two large categories in these spaces: the locally bounded and
the locally convex ones. An important result by Aoki [13] and Rolewicz [46] guarantees that every
locally bounded metric vector space admits a compatible p-norm, so that the class of locally bounded
F -spaces coincides with the class of quasi-Banach spaces. On the other hand, it is also well known that
normable metric spaces are precisely the metric vector spaces which are locally bounded and locally
convex (this result was proved by Kolmogorov in 1935 [33]). In particular, an F -space is Banach if
and only if it is locally bounded and locally convex.

Given (X, d) an F -space and A0 ⊂ A1 ⊂ . . . ⊂ An ⊂ . . . ⊂ X an infinite chain of subsets of X ,
where all inclusions are strict, we say that (X, {An}) is an approximation scheme (or that (An) is an
approximation scheme in X) if:

(A1) there exists a map K : N → N such that K(n) ≥ n and An +An ⊆ AK(n) for all n ∈ N,

(A2) λAn ⊂ An for all n ∈ N and all scalars λ,

(A3)
⋃

n∈N
An is a dense subset of X .

Approximation schemes were introduced in Banach space theory by Butzer and Scherer in 1968
[17] and, independently, by Y. Brudnyi and N. Kruglyak under the name of “approximation families”
in 1978 [16]. They were popularized by Pietsch in his seminal paper of 1981 [37], which studied the
approximation spaces Ar

p(X,An) = {x ∈ X : ∥x∥Ar
p
= ∥{E(x,An)}∞n=0∥ℓp,r < ∞}. Here,

ℓp,r =

⎧
⎨

⎩{an} ∈ ℓ∞ : ∥{an}∥p,r =
(

∞∑

n=1

nrp−1(a∗n)
p

) 1
p

< ∞

⎫
⎬

⎭

denotes the so called Lorentz sequence space, (X, ∥ · ∥X) is a quasi-Banach space and E(x,An) =
infa∈An ∥x− a∥X .

A fundamental part of the theory developed by the authors of the above mentioned papers con-
sists of the study of the embeddings between the involved spaces. In particular, Pietsch proved
that the embedding Ar

p(X,An) ↪→ As
q(X,An) holds true whenever r > s > 0 or r = s and p < q.

This, in conjunction with the central theorems in approximation theory, which state a strong rela-
tion between smoothness of functions f (compactness of operators T , respectively) and fast decay
of approximation errors E(f,An) (approximation numbers an(T ), respectively), has been used to
speak about the scale of smoothness (compactness, respectively) defined by an approximation scheme
(X, {An}). Concretely, it is assumed (see, for example, [8, 26, 27, 38]) that membership to the
approximation space Ar

p(X, {An}) is a concept of smoothness (compactness if X = B(Y1, Y2) and
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An = {T ∈ B(Y1, Y2) : rank(T ) < n}). Approximation schemes are, thus, a natural subject of study
in Approximation Theory. Indeed, the approximation scheme concept is the abstract tool that models
all approximation processes, and can be considered as a central concept for the theory.

Another main motivation for Pietsch’s contribution [37] was the existence of a strong parallelism
between the theories of approximation spaces and interpolation spaces. In particular, he proved em-
bedding, reiteration and representation results for his approximation spaces. Simultaneously and also
independently, Tiţa [50] studied, from 1971 onwards, for the case of approximation of linear operators
by finite rank operators, a similar concept, based on the use of symmetric norming functions Φ and the
sequence spaces defined by them, SΦ = {{an} : ∃ limn→∞ Φ(a∗1, a

∗
2, · · · , a∗n, 0, 0, · · · )}. The concept of

approximation scheme given in the present paper generalizes to the F -spaces setting a definition which
was introduced by Almira and Luther [9, 10]. They also created a theory for generalized approximation
spaces via the use of general sequence spaces S (that they named “admissible sequence spaces”) and the
definition of the approximation spaces A(X,S, {An}) = {x ∈ X : ∥x∥A(X,S) = ∥{E(x,An)}∥S < ∞}.
Other papers with a similar spirit of generality have been written by Aksoy [1, 2, 3, 6], Tiţa [54] and
Pustylnik [43, 44]. Finally, a few other important references for people interested on approximation
spaces are [18]–[20], [22, 36], [53]–[50]. It is important to remark that, due to the centrality of the
concept of approximation scheme in approximation theory, the idea of defining approximation spaces
is a quite natural one. Unfortunately, this has had the negative effect that many unrelated people has
thought on the same things at different places and different times, and some papers in this subject
partially overlap.

In this paper, we study the behavior of best approximation errors of an element x ∈ X relative to
an approximation scheme when (X, d) is an F -space.

To proceed further, we establish our notation. We write {εi} ↘ 0 to indicate the sequence
ε1 ≥ ε2 ≥ . . . ≥ 0 satisfies limi εi = 0. For an F -space (X, d), we denote by Bd(x, r) and Sd(x, r) the
closed ball and the sphere of center x ∈ X and radius r > 0, respectively. That is, Sd(x, r) = {y ∈ X :
d(x, y) = r} and Bd(x, r) = {y ∈ X : d(x, y) ≤ r}. We use the notation B(x, r) and S(x, r) if there is
no possibility of confusion with respect to the metric d we are dealing with. If x ∈ X , and A ⊂ X , we
define the best approximation error of x with respect to A by E(x,A)X = infa∈A d(x, a). When there
is no confusion as to the ambient space X , we simply use the notation E(x,A). If B and A are two
subsets of X and λ is an scalar, we set A+ B = {x+ y : x ∈ A and y ∈ B}, λA = {λx : x ∈ A} and
E(B,A) = supb∈B E(b, A). Note that E(B,A) may be different from E(A,B). Finally, we recall that
A ⊂ X is bounded if for every r > 0 there exists λ > 0 such that A ⊆ λB(0, r). This is quite different
from being d-bounded, which means that A ⊆ B(0, r) for a certain r > 0.

The results described below have their origins in the classical Lethargy Theorem by S.N. Bernstein
[14], stating that, for any linear approximation scheme {An} in a Banach space X , if dimAn < ∞
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for all n and {εn} ↘ 0, there exists x ∈ X such that E(x,An) = εn for all n ∈ N. Bernstein’s
proof is based on a compactness argument, where he imposed dimAn < ∞ for all n. In 1964 H. S.
Shapiro [48] used Baire’s category theorem and Riesz’s lemma (on the existence of almost orthogonal
elements to any closed linear subspace Y of a Banach space X) to prove that, for any sequence
A1 ! A2 ! . . . ! X of closed but not necessarily finite dimensional subspaces of a Banach space
X , and any sequence {εn} ↘ 0, there exists an x ∈ X such that E(x,An) ̸= O(εn). This result
was strengthened by Tjuriemskih [56], who, under the very same conditions of Shapiro’s Theorem,
proved the existence of x ∈ X such that E(x,An) ≥ εn, n = 0, 1, 2, . . . Moreover, Borodin [15] gave
a new easy proof of this result and proved that, for arbitrary infinite dimensional Banach spaces X
and for sequences {εn} ↘ 0 satisfying εn >

∑∞
k=n+1 εk, n = 0, 1, 2, . . ., there exists x ∈ X such that

E(x,Xn) = εn, n = 0, 1, 2, . . .
Motivated by these results, in [11] the authors gave several characterizations of the approximation

schemes with the property that for every non-increasing sequence {εn} ↘ 0 there exists an element
x ∈ X such that E(x,An) ̸= O(εn). In this case we say that {An} satisfies Shapiro’s Theorem on
X . In particular, Shapiro’s original theorem claims that all non-trivial linear approximation schemes
(X, {An}) with X a Banach space, satisfy a result of this kind.

Let us introduce yet another definition: we say that the subset Y of X satisfies Shapiro’s theorem
with respect to the approximation scheme (X, {An}) if for every sequence {εn} ↘ 0 there exists an
element x ∈ Y such that E(x,An) ̸= O(εn). In order to simplify notation, and when there is no
confusion, we will just say that the approximation scheme {An} satisfies Shapiro’s theorem on Y .

Now, while studying these problems for general approximation schemes, the following results were
proved (see [11, Theorem 2.2, Corollary 3.7] and [12, Theorems 2.9, 4.2, 4.3 and 7.7]):

Theorem 1.1. Let X be a quasi-Banach space. For any approximation scheme (X, {An}), the follo-
wing are equivalent:

(a) The approximation scheme {An} satisfies Shapiro’s Theorem on X.

(b) There exists a constant c > 0 and an infinite set N0 ⊆ N such that for all n ∈ N0, there exists
some xn ∈ X \An which satisfies E(xn, An) ≤ cE(xn, AK(n)).

(c) There is no decreasing sequence {εn} ↘ 0 such that E(x,An) ≤ εn∥x∥ for all x ∈ X and n ∈ N.

(d) E(S(0, 1), An) = 1, n = 0, 1, 2, . . .

(e) There exists c > 0 such that E(S(0, 1), An) ≥ c, n = 0, 1, 2, . . .

Moreover, if X is a Banach space, then all these conditions are equivalent to the following claim:
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(f) For every non-increasing sequence {εn}∞n=0 ↘ 0 there exists an element x ∈ X such that
E(x,An) ≥ εn for all n ∈ N.

Theorem 1.2. Let X be a quasi-Banach space and assume that (X, {An}) is an approximation scheme
which satisfies Shapiro’s theorem on X. If Y ⊆ X is a finite codimensional subspace of X, then {An}
satisfies Shapiro’s theorem on Y . If, furthermore, X is Banach and Y is closed in the topology of X,
then for every sequence {εn} ↘ 0 there exists y ∈ Y such that E(y,An)X ≥ εn for all n ∈ N.

Theorem 1.3. Let X be a quasi-Banach space and assume that (X, {An}) is an approximation scheme
such that An is boundedly compact on X for all n ∈ N. If Y ⊆ X is an infinite dimensional closed
subspace of X, then {An} satisfies Shapiro’s theorem on Y .

Theorem 1.4. Let X be a Banach space and assume that (X, {An}) is a linear approximation scheme
on X such that dimAn < ∞ for all n ∈ N. If Y ⊆ X is an infinite dimensional closed subspace of X,
then for every sequence {εn} ↘ 0 there exists y ∈ Y such that ∥y∥ = ε0 and E(y,An)X ≥ εn for all
n ≥ 1.

Theorem 1.5. Suppose Y ⊆ X is an infinite dimensional closed subspace of a Banach space X, and
E = {ei}∞i=0 is an unconditional basis of X. Set

Σn(E) =
⋃

I⊆N,#(I)=n

span{ei : i ∈ I}, (n ∈ N).

Then Y satisfies Shapiro’s theorem with respect to the approximation scheme {Σn(E)}.

The main goal of this paper is to initiate a study about approximation schemes that satisfy
Shapiro’s theorem in the F -spaces setting. This question was studied, for the case of linear approxi-
mation schemes, by G. Albinus [7]. In Section 2 we characterize, for a large class of F -spaces (X, d),
the approximation schemes {An} which satisfy Shapiro’s theorem on X and, as a consequence, we
give a new proof of Albinus’s theorem and we show a few more examples of approximation schemes
satisfying Shapiro’s theorem on F -spaces. In Section 3 we use the ideas of Section 2 to prove a general
lethargy result for arbitrary scales of numbers and, as a consequence, we prove that, for a large class
of quasi Banach spaces X , all s-number sequences sn(T ) satisfy Shapiro’s theorem in L(X). Finally,
in Section 4, we add some new applications of the lethargy results to the study of slow convergence of
sequences of (possibly nonlinear) operators, a subject which has been recently investigated by Deutsch
and Hundal for the case of continuous linear operators in the Banach setting [23, 24, 25].
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§2. Shapiro’s Theorem for F -spaces

Let us start with some general considerations about approximation schemes and the Shapiro’s theorem.
The first observation is that approximation schemes are only interesting in the infinite dimensional
context:

Proposition 2.1. Let (X, d) be a metric vector space. If dim(X) < ∞ and {An} satisfies the
conditions (A1), (A2) and (A3) above, then there exists N ∈ N such that AN = X.

Proof. Let us set Xn = span(An), n = 0, 1, . . . Obviously, Xn is a closed subspace of X (since
s = dim(X) < ∞, which implies that all its subspaces are closed). Moreover,

⋃
n Xn is a dense

subspace of X . Then Baire category theorem claims that there exists m ∈ N such that Xm has
non-empty interior. Assume that B(x, r) ⊂ Xm. Then B(−x, r) ⊂ Xm and

B(0, r) ⊆ 1

2
(B(x, r) +B(−x, r)) ⊂ Xm,

since d is translation invariant, which implies that, if d(z, 0) ≤ r then d(x+z, x) ≤ r, d(−x+z,−x) ≤ r
and z = 1

2 ((x + z) + (−x+ z)). It follows that Xm = X since the balls B(0, r) are absorbing subsets
of X . Now, Am spans Xm, so that we can take an algebraic basis of Xm = X formed by elements
of Am. In particular, every x ∈ X is a finite sum

∑s
k=1 λkak of elements of Am (since λAm ⊆ Am

for all scalar λ). On the other hand, Am + Am + · · ·Am (s times) is a subset of Ah(m), where
h(m) = K(K(· · ·K(m) · · · )) = N ∈ N is a fixed finite number. This ends the proof. !

In the normed and quasi-normed setting, two (quasi-)norms ∥ · ∥1 and ∥ · ∥2, defined over the same
vector space X , are equivalent (i.e., define the same topology on X) if and only if there exists two
constants C1, C2 > 0 such that C1∥x∥2 ≤ ∥x∥1 ≤ C2∥x∥2 for all x ∈ X . This has the nice consequence
that an approximation scheme {An} in X satisfies Shapiro’s theorem with respect to the (quasi-) norm
∥ · ∥1 if and only if it satisfies Shapiro’s theorem with respect to any equivalent (quasi-)norm ∥ · ∥2.
In the case of F -spaces the question is much more delicate, since the equivalence of two distances d1,
d2 is a much more subtle concept. Recall that two metrics d1 and d2 over the vector space X are
equivalent if they generate the same topology on X .

Definition 2.2 (Rolewicz, [45]). The metric d is non-decreasing if d(αx, 0) ≤ d(x, 0) whenever 0 ≤
α ≤ 1.

Remark 2.3.

(i) If the metric d is non decreasing, then d(αx, 0) ≤ d(βx, 0) whenever 0 ≤ α ≤ β since, if
0 ≤ α < β, then 0 ≤ α

β ≤ 1 and d(αx, 0) = d(αβ βx, 0) ≤ d(βx, 0).
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(ii) Assume that d is non decreasing and 0 < λ ≤ n with n ∈ N. Then d(λx, 0) = d(λnnx, 0) ≤
d(nx, 0) ≤ nd(x, 0) for all x ∈ X . Consequently, if A ⊂ X satisfies αA ⊂ A for all scalar α, then

E(αx,A) ≤ ([α] + 1)E(x,A) for all x ∈ X and α > 0

(here [α] denotes the integral part of α).

(iii) If (X, d) is a metric vector space, then d∗(x, y) = sup0≤t≤1 d(tx, ty) defines a non-decreasing
equivalent metric on X (see [45, Theorem 1.2.2]).

Example 2.4. If (X, d) is a locally convex metrizable topological vector space with metric d(x, y) =

maxk∈N{2−k pk(x−y)
1+pk(x−y)}, where {pk} is a separating family of semi norms of X , then ∥x∥X = d(x, 0)

satisfies
min{α, 1}∥x∥X ≤ ∥αx∥X ≤ max{α, 1}∥x∥X for all x ∈ X and α > 0.

In particular, d is non-decreasing. Furthermore, if A ⊂ X satisfies λA ⊂ A for all scalar λ, then

min{α, 1}E(x,A) ≤ E(αx,A) ≤ max{α, 1}E(x,A) for all x ∈ X and α > 0.

Proof. To prove this result it is enough to demonstrate that, if t,α ≥ 0, then

min{α, 1}
t

1 + t
≤

αt

1 + αt
≤ max{α, 1}

t

1 + t
. (2.1)

These inequalities follow directly from the fact that φ(t) = t
1+t is an increasing function on (0,+∞)

since, if α > 1, then
t

1 + t
≤ αt

1 + αt
≤ α

t

1 + t
,

and, if α < 1, then

α
t

1 + t
≤

αt

1 + αt
≤

t

1 + t
,

which is what we wanted to prove. !

Example 2.5 (Musielak and Orlicz). Let X be a vector space with a metrizing modular ρ(x). Then
Xρ = {x ∈ X : ρ(x) < ∞} is a vector space and

dρ(x, y) = inf

{
ε > 0 : ρ

(
x− y

ε

)
< ε

}

defines a metric on Xρ which is non decreasing and invariant by translations. Moreover, if ∥x∥ρ =
dρ(x, x), then {∥xn∥ρ} → 0 if and only if ρ(xn) → 0 (see [45, p. 6, Proposition 1.2.1 and Theorem
1.2.4] for the definition of modulars and a proof of this result).
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Definition 2.6. Let {An} be an approximation scheme on the F -space (X, d) and let B ⊆ X . We
say that:

(a) {An} fails Shapiro’s theorem on B if there exists {εn} ↘ 0 such that, if x ∈ B then E(x,An) ≤
C(x)εn for all n ∈ N and a certain constant C(x) > 0.

(b) {An} fails Shapiro’s theorem uniformly on B if there exists {εn} ↘ 0 such that E(x,An) ≤ εn
for all n ∈ N and all x ∈ B.

(c) {An} satisfies Shapiro’s theorem on B if for every {εn} ↘ 0 there exists x ∈ B such that
E(x,An) ̸= O(εn).

Theorem 2.7. Let (X, d) be an F -space and assume that d is non-decreasing. Let {An} be an
approximation scheme in X. Then the following are equivalent claims:

(i) {An} fails Shapiro’s theorem in X.

(ii) There exists r0 > 0 such that {An} fails Shapiro’s theorem uniformly on the ball B(0, r0).

Consequently, the approximation scheme {An} satisfies Shapiro’s theorem on X if and only if

inf
n∈N

E(B(0, r), An) > 0 for all r > 0.

For the proof of this result we need to use the following general property about sequences of
positive real numbers:

Lemma 2.8. Given {εn} ↘ 0 and {h(n)} an increasing sequence of natural numbers satisfying
n ≤ h(n) for all n, there exists a sequence {ξn} ↘ 0 such that εn ≤ ξn and ξn ≤ 2ξh(n) for all n.

Proof. See [11, Lemma 2.3]. !

Proof of Theorem 2.7.
(i) ⇒ (ii). Assume that {An} fails Shapiro’s theorem in X . Then there exists {εn} ↘ 0 such that,
for every x ∈ X , there is a constant C(x) > 0 such that E(x,An) ≤ C(x)εn for n = 0, 1, . . . It follows
from Lemma 2.8 that we may assume, without loss of generality,

εn ≤ 2εK(n+1)−1 for all n ∈ N.

Obviously X =
⋃

n Γn, where Γα = {x ∈ X : E(x,An) ≤ αεn for all n ∈ N}. The sets Γn are
closed subsets of X , so that Baire’s category theorem implies that Γm0 contains an open ball B(x0, r0)
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for a certain m0 ∈ N. Furthermore, it is easy to check that the sets Γα satisfy the symmetry condition
Γα = −Γα, so that B(−x0, r0) ⊆ Γm0 . Let x, y ∈ Γm0 . Then

E

(
x+ y

2
, AK(n)

)
≤ E

(x
2
, An

)
+ E

(y
2
, An

)
(since An +An ⊆ AK(n))

≤ E(x,An) + E(y,An) (since d is non-decreasing)

≤ 2m0εn (n = 0, 1, . . .).

Let us now take j ∈ N be an (arbitrary) natural number. Then there exists a unique n ∈ N such that
K(n) ≤ j ≤ K(n+ 1)− 1. Hence

E

(
x+ y

2
, Aj

)
≤ E

(
x+ y

2
, AK(n)

)
≤ 2m0εn ≤ 2Cm0εK(n+1)−1 ≤ 4m0εj ,

so that x+y
2 ∈ Γ4m0 . It follows that

B(0, r0) ⊆
1

2
(B(x0, r0) +B(−x0, r0)) ⊂ Γ4m0 .

Hence {An} fails Shapiro’s theorem uniformly on B(0, r0).

(ii) ⇒ (i). If {An} fails Shapiro’s theorem uniformly on B(0, r0), then there exists {εn} ↘ 0 such
that, E(x,An) ≤ εn for all n ∈ N and all x ∈ B(0, r0). On the other hand, the balls are absorbing
subsets of X , so that, for any x ∈ X there exists λ > 0 such that x ∈ λB(0, r0). Then x = λy for
some y ∈ B(0, r0) and

E(x,An) = E(λy,An) ≤ ([λ] + 1)E(y,An) ≤ ([λ] + 1)εn, for all n ∈ N.

!

Remark 2.9. It easily follows from the proof of (i) ⇒ (ii) in Theorem 2.7 that this implication holds
true as soon as the metric d satisfies d(x2 , 0) ≤ d(x, 0) for all x ∈ X . Analogously, the implication

(ii) ⇒ (i) holds true as long as d satisfies f(λ) = supx ̸=0
d(λx,0)
d(x,0) < ∞ for all λ ∈ R.

Remark 2.10. Theorem 2.7 generalizes Theorem 1.1 to F -spaces since, in the case of (quasi-)
Banach spaces we have that E(rx,An) = |r|pE(x,An) (with p = 1 for the Banach setting), so
that E(S(X), An) = E(B(0, 1), An) and E(B(0, r), An) = rpE(B(0, 1), An) for all n ∈ N and all
r > 0. In particular, this implies that infn∈N E(B(0, r), An) > 0 for all r > 0 if and only if
infn∈N E(S(X), An) > 0.
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We use Theorem 2.7 to prove the following important result:

Proposition 2.11. Let d1, d2 be two equivalent metrics over the same metric vector space X and let
us assume that {An} is an approximation scheme on X. Then the following are equivalent claims:

(i) There exists r1 > 0 such that {An} fails Shapiro’s theorem uniformly on the ball Bd1(0, r1).

(ii) There exists r2 > 0 such that {An} fails Shapiro’s theorem uniformly on the ball Bd2(0, r2).

Consequently, if d1, d2 are both non decreasing equivalent metrics defining an F -space X, then {An}
satisfies Shapiro’s theorem with respect to d1 if and only if {An} satisfies Shapiro’s theorem with
respect to d2.

Remark 2.12. An important result by Klee [32] (see also [45, Theorem 1.4.4.]) guarantees that, if
(X, d) is an F -space and d′ is a metric which is equivalent to d and translation invariant, then (X, d′)
is also an F -space (i.e., X is complete with respect to d′). This may not be the case if the metric
d′ is not translation invariant! Fortunately all metrics in this paper are assumed to be translation
invariant.

Proof of Proposition 2.11. By definition, d1 and d2 are equivalent metrics inX if there exists functions
ϕ,φ : (0,∞) → (0,∞) such that

Bd2(0,ϕ(r)) ⊆ Bd1(0, r), Bd1(0,φ(r)) ⊆ Bd2(0, r),

for all r > 0. Take τ0 = ϕ(1) and 0 < r < τ0. Then

Bd2(0, r) ⊆ Bd2(0, τ0) ⊆ Bd1(0, 1)

and there exists
φ∗(r) := inf{s > 0 : Bd2(0, r) ⊆ Bd1(0, s)}.

In particular, Bd2(0, r) ⊆ Bd1(0,φ
∗(r)). Analogously, for r < τ1 = φ(1) the function

ϕ∗(r) := inf{s > 0 : Bd1(0, r) ⊆ Bd2(0, s)}

is well defined and satisfies Bd1(0, r) ⊆ Bd2(0,ϕ
∗(r)).

Let us prove that limr→0 ϕ∗(r) = 0. Obviously, ϕ∗ is an increasing function, since δ1 < δ2 implies
Bd1(0, δ1) ⊆ Bd1(0, δ2), so that limr→0 ϕ∗(r) = infr>0 ϕ∗(r) = ρ ≥ 0. Assume that ρ > 0. Then

Bd1

(
0,φ(

ρ

2
)
)
⊆ Bd2

(
0,
ρ

2

)
,
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and
ρ ≤ ϕ∗(φ(

ρ

2
)) = inf{s : Bd1(0,φ(

ρ

2
)) ⊆ Bd2(0, s)} ≤ ρ

2
,

which is impossible. It follows that limr→0 ϕ∗(r) = 0. Assume (i). Let {εn} ↘ 0 and r1 be such that

Ed1(x,An) ≤ εn for all x ∈ Bd1(0, r1) and all n ∈ N.

Let r2 = ϕ(r1) > 0 and let x ∈ Bd2(0, r2) ⊆ Bd1(0, r1). For each n ∈ N there exists an ∈ An such that

d1(x, an) = d1(x − an, 0) ≤ 2Ed1(x,An) ≤ 2εn.

In other words, we have that x − an ∈ Bd1(0, 2εn) ⊆ Bd2(0,ϕ
∗(2εn)), so that Ed2(x,An) ≤ ϕ∗(2εn).

Now, the sequence {ϕ∗(2εn)} is decreasing, converges to zero and does not depend on x ∈ Bd2(0, r2).
This ends the proof of (i) ⇒ (ii). The implication (ii) ⇒ (i) follows with the very same arguments.

The last part of this proposition follows as an easy corollary of the first part and Theorem 2.7. !

Theorem 2.7 characterizes approximation schemes satisfying Shapiro’s theorem on (a large class
of) F -spaces. Now, a natural question is whether this characterization is useful for studying some
concrete examples (otherwise, it would be a nice but inapplicable result). Fortunately, the theorem
can be used for some classical cases. In particular, some extra computations lead to a generalization
of Riesz’s lemma for the F -spaces setting that was proved by Albinus [7], and we can characterize
non-trivial linear approximation schemes satisfying Shapiro’s theorem:

Theorem 2.13 (Albinus). Let (X, d) be an F -space with non decreasing metric d and let {An} be a
non trivial linear approximation scheme on X. Then {An} satisfies Shapiro’s theorem on X if and
only if infn∈N E(X,An) > 0.

Lemma 2.14 (Albinus-Riesz Lemma). Let (X, d) be a metric vector space, M a vector subspace of
X, and r > 0. Then

E(B(0, r),M) = min{r, E(X,M)}.

Proof. The inequalityE(B(0, r),M) ≤ E(X,M) is obvious sinceB(0, r) ⊆ X . Moreover,E(B(0, r),M)
≤ r because 0 ∈ M implies that E(x,M) ≤ d(x, 0) for all x. This proves

E(B(0, r),M) ≤ min{r, E(X,M)}.

To prove the other inequality we only need to check, that if E(B(0, r),M) < r, then E(B(0, r),M) =
E(X,M).
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Let us assume that E(B(0, r),M) < s < r. If B(0, s) + M ̸= X there exists x ∈ X such
that E(x,M) > s. Define the function ϕ(t) = E(tx,M). It is easy to prove that ϕ is continuous and
ϕ(0) = 0, ϕ(1) > s, so that there exists τ ∈ (0, 1) such that ϕ(τ) = s. Moreover we can take a sequence
{τn} ⊆ [0, 1] such that {ϕ(τn)} is increasing and converges to s (this is so because φ(0) = 0 < s). Let
n ∈ N and set zn = τnx. Then E(zn,M) < s, which implies that there exists mn ∈ M such that
zn = mn+ an with d(an, 0) < s. It follows that E(an,M) = E(zn,M) < s (since M is a vector space)
and an ∈ B(0, s). Hence E(zn,M) ≤ E(B(0, s),M) ≤ E(B(0, r),M) < s < r for all n. On the other
hand,

E(B(0, r),M) < s = lim
n→∞

E(zn,M) ≤ E(B(0, r),M),

which is impossible. This proves thatB(0, s)+M = X , so that E(X,M) ≤ s. Hence, if E(B(0, r),M) <
r, then E(B(0, r),M) = E(X,M), which is what we wanted to prove. !

Proof of Albinus’s theorem. Theorem 2.7 guarantees that {An} fails Shapiro’s theorem if and only if
there exists r0 > 0 such that {E(B(0, r0), An)} ↘ 0. On the other hand, Albinus-Riesz’s lemma
claims that E(B(0, r0), An) = min{r0, E(X,An)} for all n. Hence {An} fails Shapiro’s theorem if
and only if limn→∞ E(X,An) = 0. In other words, {An} satisfies Shapiro’s theorem if and only if
infn∈N E(X,An) > 0. !

Definition 2.15. Let (X, d) be a linear metric space and let ∥x∥ = d(x, 0). Let V ⊆ X be a linear
subspace of X . We define the radius of V as

R∥·∥(V ) = inf
v∈V \{0}

sup
t>0

∥tv∥

(noting that, this radius can be infinity). We say that (X, d) contains short lines if R∥·∥(X) = 0.

Proposition 2.16. Let us assume that X is an F -space and {Xn} is a nontrivial linear approximation
scheme on X such that dimXn < ∞ for all n. If

R∥·∥

(
⋃

n

Xn

)

> 0,

then infn E(X,Xn) > 0 and {Xn} satisfies Shapiro’s theorem.

Proof. The result follows directly from [34, Theorem 4.1]. !

The following result shows a simple sufficient condition for an approximation scheme {An} to
satisfy Shapiro’s theorem on F -spaces.
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Proposition 2.17. Let (X, d) be an F -space with non decreasing metric d and let {An} be an appro-
ximation scheme on X. If there exist No ⊆ N an infinite sequence of natural numbers, {xn}n∈No a
bounded subset of X and c > 0 such that, for all n ∈ No we have that

c ≤ E(xn, An),

then {An} satisfies Shapiro’s theorem on X.

Proof. We proceed by contradiction. If we assume that {An} fails Shapiro’s theorem on X , Theorem
2.7 guarantees that {An} fails Shapiro’s theorem uniformly on a ball B(0, r) for a certain r > 0,
since the metric d is non decreasing. This means that there exist r > 0 and {εn} ↘ 0 such that
E(x,An) ≤ εn for all n ∈ N and all x ∈ B(0, r). Let us now assume that {xnk

}k∈N is a bounded
subset of X , c > 0 and we have that c ≤ E(xnk

, Ank
) for all k ∈ N, and limk→∞ nk = +∞. Take

λ > 0 such that {xnk
}∞k=0 ⊆ λB(0, r) and write xnk

= λzk with zk ∈ B(0, r). Then E(zk, An) ≤ εn
for all n. It follows that

c ≤ E(xnk
, Ank

) = E(λzk, Ank
) ≤ ([λ] + 1)E(zk, Ank

) ≤ ([λ] + 1)εnk
(k = 0, 1, . . .),

which is impossible, since {εn} ↘ 0. !

Corollary 2.18. Let (X, d) be a locally convex metrizable topological vector space with metric d(x, y) =

maxk∈N{2−k pk(x−y)
1+pk(x−y)}, where {pk} is a separating family of semi norms of X. Assume that (Mk) ⊂

[0,∞), No is an infinite subset of N and there exist {xn}n∈No ⊆ X, m0 ∈ N and δ > 0 such that:

(a) pk(xn) ≤ Mk for all k ∈ N and n ∈ No,

(b) Em0(xn, An) := infa∈An pm0(xn − a) > δ for all n ∈ No.

Then {An} satisfies Shapiro’s theorem on X.

Proof. Condition (a) guarantees that {xn}n∈No is a bounded subset of X . On the other hand, ξ(t) =
t/(1 + t) is an increasing function on (0,∞), which implies that, for n ∈ No,

0 < c = 2−m0
δ

1 + δ
< 2−m0

Em0(xn, An)

1 + Em0(xn, An)
≤ max

m∈N

{
2−m Em(xn, An)

1 + Em(xn, An)

}

= max
m∈N

{
inf

a∈An

2−m pm(xn − a)

1 + pm(xn − a)

}
≤ inf

a∈An

{
max
m∈N

2−m pm(xn − a)

1 + pm(xn − a)

}
= E(xn, An),

and we can use Proposition 2.17. !
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We end this section with the observation that there are infinite dimensional F -spaces with non-
decreasing metrics which do not contain approximation schemes satisfying Shapiro’s theorem.

Example 2.19. Let s denote the F -space of all sequences of real numbers {an}∞n=1 with the metric

d({an}, {bn}) =
∑∞

k=1
1
2k

|ak−bk|
1+|ak−bk|

. Then d is a non-decreasing metric and every approximation

scheme {An} in (s, d) fails Shapiro’s theorem uniformly on s.

Proof. Given N ∈ N we denote by sN the space of all sequences {an} such that aN+k = 0 for all
k ≥ 1. Let {An} be an approximation scheme in (s, d). It is easy to check that the sets Bn = φN (An),
n = 0, 1, . . . (where φN ({ak}∞k=1) = {aNk}∞k=1, aNk = ak if k ≤ N and aNk = 0 if k > N) define an
approximation scheme on sN . Hence Proposition 2.1 implies that sN = Bm(N)+k for all k ≥ 0 and a
certain m(N) < ∞.

Let x ∈ s and let a ∈ Am(N) be such that φN (x) = φN (a). Then d(x, a) ≤
∑∞

k=1
1

2N+k = 1
2N .

Hence E(s, Am(N)) ≤ 2−N . It follows that {E(s, An)} ↘ 0 and E(x,An) ≤ E(s, An) for all x ∈ X
and all n ∈ N. This ends the proof.

!

§3. Shapiro’s Theorem for s-numbers and other scales of num-
bers

A careful inspection of Theorem 2.7 shows that its proof rests on the construction of the sets Γn,
which should be closed and have certain symmetry properties, and the fact that E(x + y,AK(n)) ≤
E(x,An) + E(y,An). This suggests that a lethargy result can also be proved in other contexts.
Concretely, we introduce the following concept, which admits as particular cases some well known
scales of numbers:

Definition 3.1. Let (X, d) be a metric vector space and set ∥x∥ = d(x, 0). We say that the map
E : X → ℓ∞, E(x) = {en(x)}∞n=0 defines an scale on X if the following claims hold:

(i) C1∥x∥ ≥ en(x) ≥ en+1(x) for all x ∈ X , all n ∈ N and a certain constant C1 > 0. Furthermore,
the function en : X → [0,∞) is continuous for all n ∈ N.

(ii) There exist a strictly increasing function K : N → N (which we call the “jump function”) and a
constant C2 > 0 such that eK(n)(x+ y) ≤ C2(en(x) + en(y)) for all x, y ∈ X and n ∈ N.

(iii) There exists a control function φ : [0,∞) → [0,∞) such that en(λx) ≤ φ(|λ|)en(x) for all scalar
λ and all x ∈ X . Furthermore, en(x) = en(−x) for all x ∈ X .
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Example 3.2. Let L denote the class of linear continuous operators defined between two quasi-Banach
spaces. Following Pietsch [37, 38], a rule s : L → RN defines an s-number sequence if it satisfies the
following properties:

(i) Monotonicity: ∥T ∥ = s1(T ) ≥ s2(T ) ≥ · · · ≥ sn(T ) ≥ sn+1(T ) ≥ · · · ≥ 0.

(ii) Subadditivity: sn+m−1(T + S) ≤ sm(T ) + sn(S) for all T, S ∈ L(X,Y ).

(iii) Ideal property : sn(STR) ≤ ∥S∥sn(T )∥R∥ for all S ∈ L(Z,W ), T ∈ L(Y, Z) and R ∈ L(X,Y ).

(iv) Rank property: if rank(T ) < n, then sn(T ) = 0.

(v) Norming property: sn(1ℓ2n) = 1 for all n ∈ N, where 1ℓ2n denotes the identity operator defined
on the n-dimensional Hilbert space ℓ2n.

Obviously, if s is an s-number sequence, then s defines an scale on L(X,Y ) for all pair of quasi-Banach
spaces X,Y .

Example 3.3. Given a quasi-Banach spaceX and an infinite family of subsets of P(X), Q = {Qn}∞n=0,
we say that (X,Q) is a generalized approximation scheme (or that (Qn) is a generalized approximation
scheme in X) if the following claims hold true:

(GA1) there exists a map K : N → N such that K(n) ≥ n and An ∈ Qn implies An + An ⊆ BK(n)

for certain BK(n) ∈ QK(n), for all n ∈ N;

(GA2) λAn ⊂ An for all An ∈ Qn, all n ∈ N and all scalars λ;

(GA3)
⋃

n∈N

⋃
An∈Qn

An is a dense subset of X .

Given a generalized approximation scheme (X,Q) and T ∈ L(X), we define the approximation num-
bers associated with Q by

αn(T,Q) = inf{∥T − S∥ : S ∈ L(X), S(X) ∈ Qn}

and the Kolmogorov diameters of T associated with Q by

δn(T,Q) = inf{r > 0 : ∃An ∈ Qn, T (B(0, 1)) ⊆ rB(0, 1) +An}.

It is easy to check that the maps αQ, δQ : L(X) → ℓ∞, given by αQ(T ) = {αn(T,Q)} and δQ(T ) =
{δn(T,Q)}, define scales on L(X).
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Example 3.4. Let (X, d) be a compact metric space and let C(X) denote the space of continuous
functions f : X → R equipped with the norm ∥f∥∞ = supx∈X |f(x)|. Given f ∈ C(X), the modulus
of continuity of f is the function ω(f, δ) = supd(x,y)≤δ |f(x) − f(y)|. Then Ω(f) = {ω(f, 1

1+n )}
∞
n=0

defines an scale on C(X).

Proposition 3.5. Let (X, d) be an F -space with non-decreasing metric d and let E(x) = {en(x)}∞n=0

be a scale on X. Then XE := {x ∈ X : E(x) ∈ c0} is a closed vector subspace of X.

Proof. Let x, y ∈ XE and let α,β be two scalars. Then

eK(n)(αx + βy) ≤ C2(en(αx) + en(βy)) ≤ max{φ(|α|),φ(|β|)}C2(en(x) + en(y)) → 0 (n → ∞).

This proves that XE is a vector subspace of X . Let x ∈ X be such that x = limn→∞ xn with
{xn}∞n=0 ⊆ XE . Take ε > 0 and xk such that C1C2∥x − xk∥ < ε. Then eK(n)(x) ≤ C2(en(x − xk) +
en(xk)) ≤ C2(C1∥x− xk∥+ en(xk)) ≤ ε+C2en(xk) ≤ 2ε for n big enough. This proves that x ∈ XE .

!

Definition 3.6. Let (X, d) be an F -space and assume that E(x) = {en(x)}∞n=0 is a scale on X . We
say that E satisfies Shapiro’s theorem if for any decreasing sequence {εn}∞n=0 ∈ c0 there exists x ∈ XE

such that en(x) ̸= O(εn).

Theorem 3.7. Let (X, d) be an F -space with non-decreasing metric d and let E(x) = {en(x)}∞n=0 be
a scale on X. The following are equivalent claims:

(i) there exists {εn} ↘ 0 such that en(x) = O(εn) for all x ∈ X,

(ii) there exists {εn} ↘ 0, C > 0, and r0 > 0 such that en(x) ≤ Cεn for all x ∈ B(0, r0).

Consequently, the scale E satisfies Shapiro’s theorem on X if and only if

inf
n∈N

supx∈B(0,r)∩XE
en(x) > 0

for all r > 0.

Proof.
(i) ⇒ (ii). Let {εn} ↘ 0 be such that, for every x ∈ X there is a constant C(x) > 0 satisfying en(x) ≤
C(x)εn for n = 0, 1, . . . It follows from Lemma 2.8 that we may assume, without loss of generality,
that εn ≤ 2εK(n+1)−1 for all n ∈ N. It follows that X =

⋃
n Γn, where Γα = {x ∈ X : en(x) ≤ αεn for

all n ∈ N}. Now, the sets Γn are closed subsets of X , since the functions en are continuous. Hence
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Baire’s category theorem implies that Γm0 contains an open ball B(x0, r0) for a certain m0 ∈ N.
Finally, the sets Γα satisfy the symmetry condition Γα = −Γα, since en(−x) = en(x). This implies
that B(−x0, r0) ⊆ Γm0 . Let x, y ∈ Γm0 . Then

eK(n)

(
x+ y

2

)
≤ C2

(
en(

x

2
) + en(

y

2
)
)
≤ φ

(
1

2

)
C2 (en(x) + en(y)) ≤ 2φ

(
1

2

)
C2m0εn

(n=0,1,. . . ). Let us now take j ∈ N. Then there exists a unique n ∈ N such that K(n) ≤ j ≤
K(n+ 1)− 1. Hence

ej

(
x+ y

2

)
≤ eK(n)

(
x+ y

2

)
≤ 2φ

(
1

2

)
C2m0εn ≤ 4φ

(
1

2

)
C2m0εK(n+1)−1 ≤ 4φ

(
1

2

)
C2m0εj ,

so that x+y
2 ∈ Γ4φ( 1

2 )C2m0
. It follows that

B(0, r0) ⊆
1

2
(B(x0, r0) +B(−x0, r0)) ⊂ Γ4φ( 1

2 )C2m0
.

This ends the proof.

(ii) ⇒ (i). Assume that {εn} ↘ 0 satisfies en(x) ≤ εn for all n ∈ N and all x ∈ B(0, r0) and let
x ∈ X . Then there exists λ > 0 such that x ∈ λB(0, r0), so that x = λy for some y ∈ B(0, r0). This
implies that

en(x) = en(λy) ≤ φ(λ)en(y) ≤ φ(λ)εn, for all n ∈ N.

Let us now prove the last claim of the theorem. In the case X = XE , the result follows easily from
(i) ⇔ (ii). On the other hand, if XE is a proper subspace of X , then Proposition 3.5 guarantees that
XE is an F -space when equipped with the metric of X . The result follows if we apply the equivalence
(i) ⇔ (ii) to this new space, just taking into account that BXE

(0, r) = B(0, r) ∩XE . !

Corollary 3.8. Let (X, d) be a compact metric space which contains infinitely many points and
consider the scale on C(X) given by Ω(f) = {ω(f, 1

1+n )}
∞
n=0. Then Ω satisfies Shapiro’s theorem on

C(X).

Proof. It follows from the infinitude of X that for each δ > 0 there exists x, y ∈ X , x ̸= y, with
d(x, y) ≤ δ, since from the fact that X is compact we have that it must contain an infinite convergent
sequence. The result follows from Theorem 3.7 just taking into account that if xn, yn ∈ X satisfy
0 < d(xn, yn) ≤ 1

n+1 , then gn(x) =
2
π arctan( d(x,yn)

d(xn,yn)
) belongs to the unit ball of C(X) and gn(yn) = 0,

gn(xn) = 1/2, so that ω(gn, 1
n+1 ) ≥

1
2 . !
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Given a quasi-Banach space X and E ⊆ X a closed subspace, we define λ(E,X) = inf{∥P∥ :
P is a projection of X onto E} and

pn(X) = inf{λ(E,X) : E ⊂ X, dimE = n}.

Definition 3.9. We say that a Banach space X contains uniformly complemented copies of ℓ2n, if
there exists a constant c such that for any natural number n, X contains a subspace Fn which is both
c-isomorphic to ℓ2n and c-complemented in X .

Remark 3.10. Recall that the space E is c-isomorphic to ℓ2n if there exists a linear isomorphism
u : E → ℓ2n such that max{∥u∥, ∥u−1∥} ≤ c. This property is usually denoted by E ∼c ℓ2n. It is easy
to prove that, if E ∼c ℓ2n, then every subspace of E is c2-complemented in E.

Remark 3.11. A well known theorem of Dvoretzky states that for every natural number n and every
ε > 0, there exists an N = N(n, ε) such that, if Z is a Banach space of dimension N , there exists a
subspace of Z which is (1+ε)-isomorphic to ℓ2n. Assuming that the Banach spaceX contains uniformly
complemented copies of ℓ2n, we can find FN which is both c-isomorphic to ℓ2N and c-complemented
in X . Applying Dvoretzky theorem to FN , we find a subspace En of FN which is (1 + ε)-isomorphic
to ℓ2n. Furthermore, En is c2C-complemented in X (i.e., ∥Pn∥ ≤ c2C, where by Pn we mean the
projection Pn : X → En, which is a composition of the projection of X onto FN and the projection
of FN onto En).

Corollary 3.12. Assume that X is a Banach space which contains uniformly complemented copies
of ℓ2n, and s is an s-number sequence. Then s : L(X) → ℓ∞ satisfies Shapiro’s theorem.

Proof. By hypothesis, taking into account Remark 3.11, there exists a constant C such that, for each
n ∈ N, there is a subspace En ⊆ X and a linear projection Pn : X → X such that Pn(X) = En,
En ∼(1+ 1

2 ) ℓ2n and ∥Pn∥ ≤ C. Let us denote by un : En → ℓ2n the linear isomorphism such that
max{∥un∥, ∥u−1

n ∥} ≤ 1 + 1
2 = 3

2 . Then

1 = sn(1ℓ2n) = sn(un ◦ 1En ◦ u−1
n ) ≤ ∥un∥sn(1En)∥u−1

n ∥ ≤ sn(1En)

(
3

2

)2

,

so that
4

9
≤ sn(1En).

Take Qn : X → En defined by Qn(x) = Pn(x) and let in : En → X denote the inclusion map.
Then ∥Qn∥ = ∥Pn∥ ≤ C and 1En = Qn ◦ Pn ◦ in, so that

4

9
≤ sn(1En) ≤ ∥Qn∥sn(Pn)∥in∥ ≤ Csn(Pn).
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This implies that Pn satisfies ∥Pn∥ ≤ C and sn(Pn) ≥ 4
9C > 0. The result follows since sn+k(Pn) = 0

for k = 1, 2, . . ., since rank(Pn) = n, so that Pn ∈ L(X)s. !

Remark 3.13. The condition on X of containing uniformly complemented ℓ2n’s may seem to be too
restrictive, and a result analogous to Corollary 3.12 valid for spaces X satisfying supn∈N pn(X) < ∞
may seem to be desirable. Unfortunately, our arguments in the proof of Corollary 3.12 are not valid
for a proof of such a result, since it is known that, if En is a C-complemented subspace of L1 or L∞,
then for the Hilbert numbers we have that

hn(1En) ≤
KC√
n
,

where K is Grothendieck’s constant. Indeed, suppose that P is a projection from L1 onto E, of
norm ≤ C. One should have sn(1E) ≤ sn(P ), for any s-number sequence. Now focus on the Hilbert
numbers: hn(P ) = supu,v an(uPv), where v : ℓ2 → L1 and u : E → ℓ2 are contractions. By
Grothendieck’s theorem, π2(uPv) ≤ ∥P∥π2(v) ≤ CK, where K is Grothendieck’s constant. But uPv
is an operator on a Hilbert space, where the 2-summing and Hilbert-Schmidth norms coincide. The
approximation numbers of uPv are just its singular numbers, and the n-th singular number cannot
exceed ∥uPv∥2/

√
n. The same reasoning works for L∞ instead of L1.

On the other hand, it is also well known (see, e.g., [21, Theorem 19.3]) that every B-convex Banach
space contains uniformly complemented ℓ2n’s, so that the hypothesis of Corollary 3.12 is in fact not
too much restrictive.

It would be nice to prove a result similar to Corollary 3.12 for operators T : X → Y acting between
different Banach spaces, but the result should be complicated since there are examples of s-numbers
sequences s, nice Banach spaces X,Y and decreasing sequences {εn} ↘ 0 such that all operators
T ∈ L(X,Y ) satisfy sn(T ) = O(εn). Concretely, Oikhberg [35, Proposition 1.2] has demonstrated
that all operators T ∈ L(c0, ℓ1) satisfy limk→∞

√
kxk(T ) = limk→∞

√
kyk(T ) = limk→∞ khk(T ) = 0,

where xk(T ), yk(T ) and hk(T ) denote the Weyl numbers, Chang numbers and Hilbert numbers of the
operator T , respectively.

On the other hand, Oikhberg [35, Theorem 1.1] has also proved that, for arbitrary infinite di-
mensional Banach spaces X,Y , the sequences of approximation numbers an(T ) and symmetrized (or
absolute) numbers tn(T ) satisfy Shapiro’s theorem on L(X,Y ) (for approximation numbers this result
was also proved by Almira and Oikhberg in [11]).

In [5] Aksoy and Lewicki introduced the concept of Bernstein pair with respect to an s-number
sequence sn as a pair of Banach spaces (X,Y ) such that, for all {εn} ↘ 0 there exists an operator
T ∈ L(X,Y ) and a constant d > 0 such that d−1εn ≤ sn(T ) ≤ dεn for all n ∈ N, and provided
some examples of pairs of classical Banach spaces which form a Bernstein pair with respect to the
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approximation numbers an(T ) and other s-number scales. In particular, they proved that if (X,Y )
is a Bernstein pair with respect to (sn) and it is supposed that there exists a Banach space W
which contains an isometric and complementary copy of X and a Banach space V which contains an
isomorphic copy of Y , then (W,V ) is a Bernstein pair with respect to (sn) too [5, Proposition 3.4]. As
a corollary of this result, they proved that (Lp(0, 1), Lq(0, 1)) forms a Bernstein pair with respect to
any s-number sequence as long as 1 < p < ∞ and 1 ≤ q < ∞. This result follows from the fact that
(ℓ2, ℓ2) is a Bernstein pair with respect to any sequence of s-numbers and, for 1 ≤ p < ∞, Lp(0, 1)
contains a subspace isomorphic to ℓ2 and complemented in Lp(0, 1) for p > 1.

Finally, the condition sup pn(X) = M < ∞ seems to be not superfluous in the case of Bernstein
numbers bn(T ) since Plichko has proved its necessity for this case when T : X → H , H being a
Hilbert space [41, Proposition 1]. Moreover, in [41, Theorem 1] the author proves that if X is a
Banach space which contains uniformly complemented ℓ2n’s, then for every Banach space Y the pair
(X,Y ) is Bernstein with respect to the Bernstein numbers and, in particular, Bernstein numbers
satisfy Shapiro’s theorem in L(X,Y ).

It is important to note that there are examples of Banach spaces satisfying limn→∞ pn(X) = ∞.
These examples were constructed by Pisier in 1983 (see [42]). Furthermore, if H is a Hilbert space,
then pn(H) = 1 for all n, which gives the opposite behaviour to Pisier’s example.

§4. Slow convergence of sequences of operators

Definition 4.1. Let (X, ρ) and (Y, d) be two F - spaces. Let T : X → Y be a (possibly nonlinear)
operator and Tn : X → Y be a sequence of (possibly nonlinear) operators. We say that Tn converges
almost arbitrarily slowly to T if

(C1) limn→∞ d(Tnx, Tx) = 0 for all x ∈ X ,

(C2) for every {εn} ↘ 0 there exists x ∈ X such that d(Tnx, Tx) ≥ εn for infinitely many n ∈ N.

We say that Tn converges arbitrarily slowly to T if it satisfies (C1) above and

(C3) for every {εn} ↘ 0 there exists x ∈ X such that d(Tnx, Tx) ≥ εn for all n ∈ N.

If Z ⊂ X , we say that Tn converges almost arbitrarily slowly to T relative to Z if it satisfies (C1)
above and

(C4) for every {εn} ↘ 0 there exists x ∈ Z such that d(Tnx, Tx) ≥ εn for infinitely many n ∈ N.

We say that Tn converges arbitrarily slowly to T relative to Z if it satisfies (C1) above and
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(C5) for every {εn} ↘ 0 there exists x ∈ Z such that d(Tnx, Tx) ≥ εn for all n ∈ N.

Remark 4.2. It is important to note that condition (C2) above is equivalent to what follows:

(C2)′ for every {εn} ↘ 0 there exists x ∈ X such that d(Tnx, Tx) ̸= O(εn).

Indeed, assume that {εn} ↘ 0 and x ∈ X satisfies d(Tnx, Tx) ̸= O(εn). Then there exists an strictly
increasing sequence of natural numbers {nk}∞k=1 such that d(Tnk

x, Tx) ≥ kεnk
≥ εnk

, k = 1, 2, . . .
This proves (C2)′ ⇒ (C2). The other implication follows as a consequence of the fact that, for every
sequence {εn} ↘ 0, there exists another sequence {ϵn} ↘ 0 such that such that limn→∞

ϵn
εn

= +∞ .
Hence, if we assume (C2) and take x ∈ X such that d(Tnx, Tx) ≥ ϵn for infinitely many n ∈ N, then
d(Tnx, Tx) ̸= O(εn).

Analogous arguments can be used with condition (C4), which is equivalent to the following one:

(C4)′ for every {εn} ↘ 0 there exists x ∈ Z such that d(Tnx, Tx) ̸= O(εn).

The slow convergence of sequences of operators has been recently studied by Deutsch and Hundal
[23, 24, 25]. In particular, in [23] they introduced the concepts of arbitrarily slowly (respectively,
almost arbitrarily slowly) convergence of a sequence of linear operators Tn to an operator T , and
characterized almost arbitrarily slowly convergent sequences as those which are pointwise convergent
but not norm convergent. This result can be generalized to the F -spaces setting as follows:

Theorem 4.3. Let (X, ρ) be an F -space and (Y, d) be a metric vector space with non-decreasing
metric d. Let T : X → Y be a continuous linear operator and Tn : X → Y be a sequence of continuous
linear operators. The following are equivalent claims:

(i) The sequence {Tn} converges pointwise to T but it does not converge almost arbitrarily slowly
to T .

(ii) There exists a sequence {εn} ↘ 0 and a positive real number r0 > 0 such that

(Tn − T )(Bρ(0, r0)) ⊆ Bd(0, εn), n = 0, 1, 2, . . .

In particular, if (i) holds true, {Tn} converges to T in the topology of bounded convergence. Finally,
if X is locally bounded, (i) and (ii) are equivalent to this other assertion:

(iii) {Tn} converges to T in the topology of bounded convergence.
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Proof.
(i) ⇒ (ii). Assume (i). It follows from Remark 4.2 that there exists {εn} ↘ 0 such that, for each
x ∈ X there exists C(x) > 0 satisfying d(Tnx, Tx) ≤ C(x)εn for all n ∈ N, since Tn does not converge
almost arbitrarily slowly to T . In particular, X =

⋃
m∈N

∆m, where

∆m = {x ∈ X : d(Tnx, Tx) ≤ mεn for all n ∈ N}.

Obviously, ∆m is a closed subset of X since T, Tn are continuous. Furthermore, ∆m = −∆m and, if
x, y ∈ ∆m then

d

(
Tn

(
x+ y

2

)
, T

(
x+ y

2

))
= d

(
1

2
(Tn − T )(x+ y), 0

)
≤ d ((Tn − T )(x+ y), 0)

≤ d((Tn − T )(x), 0) + d((Tn − T )(y), 0) ≤ 2mεn, (n ∈ N),

since d is non-decreasing. This implies that

1

2
(∆m +∆m) ⊆ ∆2m. (4.1)

Baire’s category theorem implies that Bρ(x0, r0) ⊆ ∆m0 for certain m0 ∈ N, x0 ∈ X and r0 > 0.
Furthermore, Bρ(−x0, r0) ⊆ ∆m0 , since ∆m0 = −∆m0 and the inclusion (4.1) shows that

Bρ(0, r0) ⊆
1

2
(Bρ(x0, r0) +Bρ(−x0, r0)) ⊆ ∆2m0 .

This proves (i) ⇒ (ii).

(ii) ⇒ (i). Assume (ii) and let x ∈ X . There exists λ > 0 such that x = λy with y ∈ Bρ(0.r0), since
these balls are absorbing sets. Hence

d(Tnx, Tx) = d((Tn − T )x, 0) = d(λ(Tn − T )y, 0) ≤ ([λ] + 1)d((Tn − T )y, 0) ≤ ([λ] + 1)εn (n ∈ N),

which proves (ii) ⇒ (i).

The last part of this theorem follows easily from the equivalence (i) ⇔ (ii) above, in conjunction
with the definition of the topology of bounded convergence on the space of linear continuous operators
B(X,Y ) and the fact that balls are bounded sets in locally bounded metric spaces. !

Remark 4.4. Recall that a subset B of a topological vector space X is bounded if for each neigh-
borhood of zero U there exists a constant m > 0 such that B ⊆ λU for all λ ≥ m, and that X is said
to be locally bounded if it contains a bounded neighborhood of zero.
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Theorem 4.3 has the following nice consequence:

Corollary 4.5. Let (X, ρ) be a locally bounded F -space and (Y, d) be a metric vector space with non
decreasing metric d. Let T : X → Y be a continuous linear operator and Tn : X → Y be a sequence
of continuous linear operators. The following are equivalent claims:

(i) The sequence {Tn} converges almost arbitrarily slowly to T .

(ii) {Tn} converges pointwise to T but it does not converge to T in the topology of bounded conver-
gence.

In [23] the authors proved that some classical families of operators are almost arbitrarily slowly
convergent to the identity and they stated (without proof) that Bernstein’s operators are in fact
arbitrarily slowly convergent to the identity. They conjectured that this property should also hold
true for other classical operators such as Féjer’s or Landau’s. They solved their conjecture in the
positive in [25] by using an appropriate modification of Tjuriemskih’s lethargy theorem [56]. These
results have been our main motivation in demonstrating Theorem 4.6 below, which transports the
ideas of [25] to a much more general context.

Theorem 4.6. Let (X, ρ) and (Y, d) be two F - spaces. Let {An} be an approximation scheme on Y
and let us assume that {An} satisfies Shapiro’s theorem on Y . Let T : X → Y be an operator and
and Tn : X → Y be a sequence of operators such that

(i) limn→∞ d(Tnx, Tx) = 0 for all x ∈ X,

(ii) Tn(X) ⊆ An for all n ∈ N.

Then the following claims hold true:

(a) If T (X) = Y then Tn → T almost arbitrarily slowly. Furthermore, if T (X) = Y and Y is a
Banach space, then Tn → T arbitrarily slowly.

(b) If Z is a subspace of Y such that {An} satisfies Shapiro’s theorem on Z and Z ⊆ T (X), then
Tn → T almost arbitrarily slowly. Moreover, if we add the hypothesis that X = Y and T = I,
then Tn → I almost arbitrarily slowly relative to Z.

(c) Assume that X, Y are quasi-Banach, An is a vector space and dimAn < ∞ for all n ∈ N and
there exists Z, a closed subspace of Y , such that Z ⊆ T (X) and dimZ = ∞. Then Tn → T
arbitrarily slowly. Moreover, if we add the hypothesis that X = Y and T = I, then Tn → I
arbitrarily slowly relative to Z.
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Proof.
(a). Let {εn} be a non-increasing sequence converging to 0. We know that E(y,An) ̸= O(εn) for a
certain y ∈ Y , since {An} satisfies Shapiro’s theorem on Y . Now, T (X) = Y implies that y = Tx for
a certain x ∈ X . This leads to

d(Tnx, Tx) ̸= O(εn)

(which is what we wanted to prove), since T (X) ⊆ An implies that d(Tnx, Tx) ≥ E(Tx,An) =
E(y,An). The second part of (a) follows directly from part (f) in Theorem 1.1 (i.e., [11, Corollary
3.7]).

(b) The arguments are the same as in (a), but now we use that {An} satisfies Shapiro’s theorem on
Z and Z ⊆ T (X). Thus, the element y can be chosen from Z and it is still of the form y = Tx for a
certain x ∈ X . This leads to almost arbitrarily slowly convergence of Tn to the operator T .

(c) Use Theorem 1.4 (i.e., [12, Theorem 4.3]). !

Theorem 4.6 includes some interesting cases not considered in [25]. We include a few of them here
for the sake of completeness:

• Greedy approximation with respect to a complete minimal system in the Banach setting produces
sequences of nonlinear operators Tn which are arbitrarily slowly convergent to the identity
operator (see [11, Theorem 6.2]).

• Greedy approximation with respect to an unconditional basis (φn)∞n=0 of a separable Banach
space X produces sequences of nonlinear operators Tn which are almost arbitrarily slowly con-
vergent to the identity operator relative to any infinite dimensional closed subspace Z of X (use
Theorem 1.5, i.e., [12, Theorem 7.7]).

• If Tn : X → Y is a sequence of linear operators, Tn → T pointwise, T (X) contains a finite
codimensional subspace of Y , and Tn(X) ̸= Y for all n, then Tn → T almost arbitrarily slowly
(use Theorem 1.2, i.e [12, Theorem 2.9], and part (b) of Theorem 4.6).

• Consider the examples given in [25] (Bernstein’s, Fejer’s, etc.). In all these cases we can prove
that the sequence of operators is arbitrarily slowly convergent to the identity operator relative
to any infinite dimensional closed subspace Z of C[a, b] (to prove this, just take into account
part (c) of Theorem 4.6).

The operators T to which Theorem 4.6 is applicable have large range. In fact, they satisfy T (X) =
Y (the whole image space) or T (X) contains a finite-codimensional subspace of Y , or it contains an
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infinite dimensional closed subspace of Y (This holds true if dimT (X) = ∞ and T has closed range.
These operators are well known in functional analysis.) This is obviously a serious restriction on
our theory. For example, if the inclusion of the infinite-dimensional closed subspace Z ⊂ T (X) is
continuous, then T will not be compact. An interesting open question is to search for some kind of
description of the class of compact operators T such that Tn converges almost arbitrarily slowly to T
if and only if it converges arbitrarily slowly to T . Moreover, perhaps this question makes sense for
strictly singular, finitely strictly singular, or other important classes of operators.
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[53] Tiţa N. (1997)
A generalization of the limit class of approximation spaces, Annal. Univ. Iasi 43, 133–138.
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