Prof. Asuman Aksoy Math Analysis I HW 3 Due 02/14/2013

1. Prove the following Inequalities

a) $|x+y| \le |x|+|y|$ (Triangle Inequality)

b) $||x| - |y|| \le |x - y|$ (Alternate Triangle Inequality)

2.

- a) Let r be a rational and t be an irrational number. Prove that rt is irrational.
- b) Given any two real numbers x and y with x < y, show that there exists an irrational number t satisfying x < t < y.

3. Give a strategy for choosing N in terms of ϵ to show that:

a)
$$\lim_{n \to \infty} \frac{1}{n^2} = 0$$

b)
$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$$

4.

a) Let (x_n) and (a_n) be sequences of real numbers and let $x \in \mathbb{R}$. Suppose for some k > 0 and some $m \in \mathbb{N}$, we have

$$|x_n - x| \le k|a_n| \quad \text{for all } n > m,$$

and $\lim_{n \to \infty} a_n = 0$. Show that $\lim_{n \to \infty} x_n = x$

b) Show that if $\{x_n\}$ converges to l, then $\{|x_n|\}$ converges to |l|. What about the converse?

5. Suppose (x_n) is a sequence in \mathbb{R} defined by

$$x_n = \int_1^n \frac{\cos t}{t^2} dt$$

a) Show that $|x_n| \leq 1$ for $n = 1, 2, 3, \cdots$

b) Show that the sequence (x_n) is Cauchy.

 $\text{Hint: You can use } |\int_1^n \frac{\cos t}{t^2} dt| \leq \int_1^n |\frac{\cos t}{t^2}| dt \text{ and indefinite integral of } \tfrac{1}{t^2} \text{ is } \tfrac{1}{t}.$

6. Let $\{x_n\}$ be a sequence such that there exist A > 0 and $C \in (0, 1)$ for which

$$|x_{n+1} - x_n| \le AC^n$$

for any $n \ge 1$. Show that $\{x_n\}$ is Cauchy. Is this conclusion still valid if we assume only

$$\lim_{n \to \infty} |x_{n+1} - x_n| = 0$$

Hint: Choose m = n + k and show that $|x_n - x_{n+k}| < \frac{A}{1-C}C^n$, recalling the following fact about geometric series :

$$a + ar + ar^{2} + \dots + ar^{n} = a \cdot \frac{1 - r^{n+1}}{1 - r} < \frac{a}{1 - r}$$
 if $0 < r < 1$.

7. Show that $\{x_n\}$ defined by $x_n = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ is divergent. Hint: Show that $\{x_n\}$ fails to be Cauchy by showing that $\frac{1}{2} \leq x_{2n} - x_n$.