1. Which of the following sets are compact?

a)
$$[0,1] \cup [5,6] \subset \mathbb{R}$$

b)
$$\{x \in \mathbb{R} : x \ge 0\} \subset \mathbb{R}$$

c)
$$\{x \in \mathbb{R} : 0 \le x \le 1 \text{ and } x \text{ is irrational}\}$$

d)
$$A = \{1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots\} \cup \{0\}$$

2. Prove that a closed subset of a compact set is compact.

3.

- a) Let r_1, r_2, r_3, \cdots be an enumeration of the rational numbers in the interval [0, 1]. Show that there is a convergent subsequence.
- b) Let A be a bounded set in \mathbb{R}^n . Prove that \overline{A} is compact.

4. Let $A \subset \mathbb{R}^n$ be compact and let x_k be a Cauchy sequence in \mathbb{R}^n with $x_k \in A$. Show that x_k converges to a point in A.

5. Let M be a complete metric space and F_n a collection of closed nonempty subsets (not necessarily compact) of M such that $F_{n+1} \subset F_n$ and the diameter of F_n ,

$$\delta(F_n) = \sup\{d(x,y): \ x,y \in F_n\} \to 0$$

Show that $\bigcap_{n=1}^{\infty} F_n$ consist of a single point. Compare this result with Cantor's Intersection Theorem.

Hint: Pick $x_n \in F_n$. Show that (x_n) is a Cauchy sequence. Its limit must be in $\overline{F_n}$ for all n. There cannot be two such points since $\delta(F_n) \to 0$.

6. Show that the cube $[a, b] \times [a, b] \times [a, b]$ is a compact subset of \mathbb{R}^3 .

7

a) Let $(x_n) \to x$ be a convergent sequence in a metric space and let

$$A = \{x_1, x_2, \cdots\} \cup \{x\}$$

Show that A is compact.

- b) Let M be a set with a discrete metric. Show that any infinite subset of M is non-compact. Why does this not contradict the statement in part a)?
- 8. Verify the nested sets property for $F_k = \{x \in \mathbb{R}: x \geq 0, 2 \leq x^2 \leq 2 + (1/k)\}$

2