Your Name Math Analysis I HW 9 May 2, 2013

1.

- a) Let $f : [1,2] \to [0,3]$ be a continuous function with f(1) = 0 and f(2) = 3. Show that f has a fixed point.
- b) Let $f : [a, b] \to [a, b]$ be a Lipschitz function with Lipschitz constant 0 < L < 1. Show that f has a unique fixed point.

2.

- a) Give an example of a mapping T of a complete metric space into itself with the property d(Tx, Ty) < d(x, y) for all x, y with $x \neq y$ which has no fixed point.
- b) Show that $f : R \to R$ defined as f(x) = cosx is not a contraction but that the function $g(x) = \frac{99}{100}cosx$ is a contraction.
- c) Show that *cosine* function is a contraction mapping on [0, a] for any $1 \le a < \frac{\pi}{2}$. Using the Banach Contraction Mapping Theorem find the solution to the equation x = cosx correct to three decimal places.

3. Let $X = \{x \in Q : x \ge 1\}$ and $f : X \to X$ is defined by $f(x) = \frac{x}{2} + \frac{1}{x}$.

- a) Show that for all $x, y \in X$ one has $d(f(x), f(y)) \leq \frac{1}{2}d(x, y)$. Where d is the usual metric on real numbers.
- b) Show that for this contraction f there is no $x \in X$ for which x = f(x). Does this contradict BCMT ?

4. Show that the system of equations: $x_1 = \frac{1}{4}x_1 - \frac{1}{4}x_2 + \frac{2}{15}x_3 + 3$ $x_2 = \frac{1}{4}x_1 + \frac{1}{5}x_2 + \frac{1}{2}x_3 - 1$ $x_3 = -\frac{1}{4}x_1 + \frac{1}{3}x_2 - \frac{1}{3}x_3 + 2$ has a unique solution. 5. Let $T: C[0,1] \to C[0,1]$ be a mapping defined by

$$Tf(x) = \int_0^x f(s)ds.$$

Show that:

- a) T is NOT a contraction.
- b) T has a unique fixed point.
- c) T^2 is a contraction.
 - Here C[0, 1] will denote the normed space of continuous functions with uniform norm.

6.

- a) Let B_c be a closed ball in a complete metric space M, and let $T : B_c \to M$ be a contraction which moves the center of B_c a distance at most (1-k)r where r is the radius of B_c and k is the contraction constant. Show that T has a unique fixed point and it is in B_c .
- b) Let B be an open ball in a complete metric space M, and let $T : B \to M$ be a contraction which moves the center of B a distance less than (1-k)r where r is the radius of B and k is the contraction constant. Show that T has a unique fixed point.
- c) Let T be a contraction on a complete metric space M, and suppose that T moves the point x a distance d. Show that the distance from x to the fixed point is at most $\frac{d}{(1-k)}$, where k is the contraction constant.

7. Consider \mathbb{R}^n with a metric $d(x,z) = \sum_{i=1}^n |x_i - z_i|$. Let T be a mapping from \mathbb{R}^n to itself defined by the system of linear equations

$$y_i = \sum_{j=1}^n a_{ij} x_j + b_i$$

where i = 1, 2, ...n. Under what conditions is T a contraction? What will be the condition if the above metric is replaced by the Euclidean metric $d(x, z) = \left[\sum_{i=1}^{n} |x_i - z_i|^2\right]^{\frac{1}{2}}$

8.

If T is a mapping from a complete metric space (M, d) into itself such that T^m is a contraction mapping for some $m \in N$, then show that T has a unique fixed point.

9.

Convert the initial value problem (IVP) to an integral equation and set up an iteration scheme to solve it.

$$\frac{dy}{dx} = 3xy$$
 where $y(0) = 1$

10. Let f be a real valued twice continously differentiable function on [a, b]. Let \tilde{x} be a simple zero of f in (a,b). Show that Newton's method defined by:

$$x_{n+1} = g(x_n)$$
 and $g(x_n) = x_n - \frac{f(x_n)}{f'(x_n)}$

is a contraction in some neighborhood of \tilde{x} , so that the iterative sequence converges to \tilde{x} for any x_0 sufficiently close to \tilde{x} .

Note that \tilde{x} is a simple zero implies that $f'(x) \neq 0$ on some neighborhood U of \tilde{x} where $U \subset [a, b]$ and f'' is bounded on U.

		1
		I
1		