Prof. Asuman Aksoy Math Analysis I HW 2 Due 02/02/2012

1)

- a) Let $f: [\frac{\pi}{2}, \frac{3\pi}{2}] \to [-1, 1]$ be given by f(x) = sinx. Prove or disprove: f is a bijection, and its inverse function is arcsinx.
- b) Find f(E) and $f^{-1}(E)$ for f(x) = 2 3x and E = (-1, 2)

2) Suppose $f: A \to B$ and $g: B \to C$ are functions show that

- a) If both f and g are one-to-one, then $g \circ f$ is one-to-one.
- b) If both f and g are onto, then $g \circ f$ is onto.
- c) If both f and g are bijection, then $g \circ f$ is bijection.

3)
For a function f : X → Y, show that the following statements are equivalent.
a) f is one-to-one

b) $f(A \cap B) = f(A) \cap f(B)$ holds for all $A, B \in \mathcal{P}(X)$

Hint: For a) \Rightarrow b) you can assume $f(A \cap B) \subseteq f(A) \cap f(B)$. For b) \Rightarrow a) consider $A = \{a\}$ and $B = \{b\}$.

4) For an arbitrary function
$$f : X \longrightarrow Y$$
, prove the following identities:
a) $f^{-1}\left(\bigcup_{i \in I} B_i\right) = \bigcup_{i \in I} f^{-1}\left(B_i\right)$
b) $f^{-1}\left(\bigcap_{i \in I} B_i\right) = \bigcap_{i \in I} f^{-1}\left(B_i\right)$
c) $f^{-1}\left(B^c\right) = \left[f^{-1}\left(B\right)\right]^c$

5)

a) Show that if r is rational $(r \neq 0)$ and x is irrational, then r + x and rx are irrational.

b) Show that there is no rational number whose square is 12

6) Let I is an interval and $f: I \to \mathbb{R}$ is a differentiable function. Prove that if the derivative of f either always positive on I, or always negative on I, then f is one-to-one on I.

7)

- a) Prove that two real numbers a and b are equal if and only if for every real number $\epsilon > 0$ it follows that $|a b| < \epsilon$.
- b) Use the triangle inequality to establish the inequalities:
 - $||a| |b|| \le |a b|$
 - $|a b| \le |a| + |b|.$