Prof. Asuman Aksoy Math Analysis I HW 4 Due 02/16/2012

For each of the following sets S, find sup(S), inf(S) if they exist:
a) {.3, .33, .333, ...}
b) {1/n : n, an integer, n > 0}
c) {-1/n : n, an integer, n > 0}
d) {x ∈ ℝ : x² < 5}
e) {x ∈ ℝ : x² > 5}

2) Let S and T are nonempty bounded subsets of \mathbb{R} with If $S \subset T$. Prove that:

$$\inf T \le \inf S \le \sup S \le \sup T$$

3) Let $\{I_n\}$ be a decreasing sequence of nonempty closed intervals in \mathbb{R} , i.e. $I_{n+1} \subset I_n$ for all $n \geq 1$. Show that $\bigcap_{n\geq 1} I_n$ is a nonempty closed interval. When is this intersection is a single point?

4) Suppose (x_n) and (y_n) are Cauchy sequences, then show that

- a) $(x_n + y_n)$ is a Cauchy sequence.
- b) $(x_n y_n)$ is a Cauchy sequence.

5) Show that if a subsequence of a Cauchy sequence converges to x, then the sequence itself converges to x.

6) Let x and y be two different real numbers. Show that there exist a neighborhood X of x and a neighborhood Y of y such that $X \cap Y = \emptyset$. Hint: You must choose your $\varepsilon > 0$ so that the intersection of $X = (x - \varepsilon, x + \varepsilon)$ and $Y = (y - \varepsilon, y + \varepsilon)$ is empty. 7) If α and β are in \mathbb{R} and $\alpha < \beta$, then every sequence of points in the interval

$$[\alpha, \beta] = \{x : \alpha \le x \le \beta\}$$

has a subsequence that converges to some point in $[\alpha,\beta]$

-

8) (Cesaro Average) Let $\{x_n\}$ be a real sequence which converges to l. Show that the sequence

$$y_n = \frac{x_1 + x_2 + \dots + x_n}{n}$$

also converges to l. What about the converse?

Hint: Notice that

$$y_n - l = \frac{x_1 + x_2 + \dots + x_n}{n} - l = \frac{(x_1 - l) + (x_2 - l) + \dots + (x_n - l)}{n}.$$

For the converse take $x_n = (-1)^n$.