Prof. Asuman Aksoy Math Analysis I HW 6 Due 03/08/2012

1) The diameter $\delta(A)$ of a nonempty set A in a metric space (X,d) is defined to be

$$\delta(A) = \sup\{d(x, y) : x, y \in A\}$$

- a) Show that $\delta(A) = 0$ if and only if A consist of a single point
- b) Show that $A \subset B$ implies that $\delta(A) \leq \delta(B)$.

2)
Show that the function

$$|| f || = \max\{| f(x)| : x \in [a, b]\}$$

defines a norm on C[a, b].

3)

- a) Show that $|\parallel x\parallel \parallel y\parallel |\leq \parallel x-y\parallel$
- b) Show that norm is a continuous function. i.e., show that $x_n \to x \Rightarrow \parallel x_n \parallel \to \parallel x \parallel$.

4) Let $\{I_n\}$ be a sequence of bounded non-empty closed subsets of a complete metric space (X,d) such that

- a) $I_{n+1} \subseteq I_n$, for all $n \ge 1$;
- b) $\lim_{n\to\infty} \delta(I_n) = 0$, where $\delta(A) = \sup\{d(x,y) : x,y \in A\}$.

Show that $\bigcap_{n\geq 1} I_n$ is not empty and reduced to a single point.

5) Show that a subset $A \subseteq \mathbb{R}$ is open if and only if A is the union of a countable collection of open intervals.

6)

Prove that

- a) If A is open and B is closed, then $A \setminus B$ is open and $B \setminus A$ is closed.
- b) Let A be open and let B be an arbitrary subset of \mathbb{R} . Is AB necessarily open? (Where $AB = \{xy \in \mathbb{R} : x \in A \text{ and } y \in B\}$.)
- c) Let $A = \{x \in \mathbb{R} : x \text{ is irrational}\}$. Is A closed?

7)

- a) Given $\overrightarrow{u} = (2+i, -3i, -1-2i)$ and $\overrightarrow{v} = (3, 4-i, -1-i)$. Find the norm $\|\overrightarrow{u}\|$ and the complex inner product $(\overrightarrow{u}, \overrightarrow{v})$ and the distance $d(\overrightarrow{u}, \overrightarrow{v})$.
- b) A complex sequence $(z_n) = (x_n + iy_n) \to z$ if and only if the real part $(x_n) \to x$ and the imaginary part $(y_n) \to y$ and z = x + iy. Use this fact to decide whether or not following complex sequences converges
 - $i) (z_n) = (i^n)$
 - ii) $(z_n) = (\frac{-1}{2})^n + i(1 \frac{1}{2n}).$

Note that Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$ implies $(z_n) = (i^n) = \{e^{i\frac{\pi}{2}}\}^n = e^{i\frac{n\pi}{2}}$.

8)

- a) Show that any discrete metric space (X, d) is complete.
- b) Show that the Euclidean space $(\mathbb{R}^2, \| . \|_2)$ is complete. Note that a Cauchy sequence (x_n) where $x_n = (x_1^n, x_2^n)$ in \mathbb{R}^2 satisfy the condition: Given $\varepsilon > 0$ there exist an $N \in \mathbb{N}$

$$\|x_k - x_l\|_2 = \sqrt{\sum_{j=1}^2 |x_j^k - x_j^l|^2} \le \varepsilon \text{ for all } k, l > N$$