Your Name Math Analysis II HW 3 February 14, 2013

Prove the following

a) Prove that if a sequence $\{f_n\}$ of continuous functions on A converges uniformly on A, then f is continuous on A.

b) Prove that
$$f(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^2}$$
 is continuous on $[0, 1]$.

Study the convergence and uniform convergence of $\{f_n\}$ and $\{f_n\}$ on A where

a)
$$f_n = \frac{\sin(nx)}{\sqrt{n}}$$
 where $A = \mathbb{R}$

b) $f_n = \frac{x}{1+n^2x^2}$ where A = [-1, 1]

Let $\{a_n\}$ be a sequence of real numbers, and let $\{f_n\}$ be a sequence of functions satisfying $\sup\{|f_n(x) - f_m(x)|: x \in A\} \le |a_n - a_m|$

where $n, m \in N$. Prove that $\{f_n\}$ converges uniformly on A.

Assume that $f_n \rightrightarrows f$ and $g_n \rightrightarrows g$, and there is M > 0 such that |f(x)| < M and |g(x)| < Mfor all $x \in A$. Show that $f_n g_n \rightrightarrows fg$. Hint: Consider $|f_n g_n - fg + fg_n - fg_n|$.

Use Drichlet test (given below) to show that the following series converges uniformly on the indicated set.

1.
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$$
 where $A = [0, 1]$.
2. $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$ where $A = [\delta, 2\pi - \delta], \ 0 < \delta < \pi$.

[Drichlet Test for convergence: Assume that $f_n, g_n : A \to \mathbb{R}, n \in N$ satisfy the following conditions:

- 1. For each fixed $x \in A$, the sequence $\{f_n(x)\}$ is monotonic
- 2. $\{f_n(x)\}$ converges uniformly to zero on A
- 3. The sequence of partial sums of $\sum_{n=1}^{\infty} g_n(x)$ is uniformly bounded on A.

Then the series $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ converges uniformly on A]

Let g be a continuous function satisfying the Lipschitz condition in the second variable, and let $T: \mathcal{C}[a, b] \to \mathbb{R}$ be defined by

$$Tx = \int_{a}^{b} g(t, y(t)) dt$$

for $x \in \mathcal{C}[a, b]$.

- a) Prove that T is continuous.
- b) Show that if we restrict T to the compact subsets of C[a, b], then there exist a function x such that $\int_a^b g(t, x(t))dt$ is a minimum.

Note that g be a continuous function satisfying the Lipschitz condition in the second variable means, there is a constant M > 0 such that

$$g(t, x(t)) - g(t, y(t))| \le M|x(t) - y(t)|$$

For $f: A \to \mathbb{R}$, with $A \subset \mathbb{R}$ define

 $w_f(\delta) = \sup\{|f(x_1) - f(x_2)|: x_1, x_2 \in A, |x_1 - x_2| < \delta\}.$

We call w_f the modulus of continuity of f and observe that w_f is monotonically increasing on $(0, \infty)$ and thus

$$\lim_{\delta \to 0^+} w_f(\delta) = \inf_{\delta > 0} w_f(\delta) \ge 0.$$

Show that f is uniformly continuous if and only if $\lim_{\delta \to 0^+} w_f(\delta) = 0$

Consider the following sets of sequences of functions. Explain why Arzela-Ascoli Theorem may fail.

1.
$$\mathbb{B} = \{f_n : f_n(x) = x + n \text{ where } x \in [0, 1]\}$$

2. $\mathbb{B} = \{f_n : f_n(x) = x^n \text{ where } x \in [0, 1]\}$
3. $\mathbb{B} = \{f_n : f_n(x) = \frac{1}{1 + (x - n)^2} \text{ where } x \in [0, \infty)\}$

Assume that $f_n : [a, b] \to \mathbb{R}$ is a sequence of differentiable functions whose derivatives are uniformly bounded. If for some x_0 , $f_n(x_0)$ is bounded as $n \to \infty$ then show that the sequence $\{f_n\}$ has a subsequence that converges uniformly on [a, b].