Your Name Math Analysis II HW 5 03/7/2013

1.

a) The map $B_n: \mathcal{C}[0,1] \to R$ defined by

$$B_n(f)(x) = \sum_{k=0}^n f(\frac{k}{n}) \begin{pmatrix} n \\ k \end{pmatrix} x^k (1-x)^{n-k}$$

is linear and monotone.

b) Show that $B_n 1 = 1$ and $B_n x = x$

2.

- a) Show that *n*-th Bernstein polynomial for $f(x) = e^x$ is $B_n(x) = [1 + (e^{\frac{1}{n}} 1)x]^n$
- b) Show that this may be rewritten as $(1 + \frac{x}{n} + \frac{c_n}{n^2})^n$ where $0 \le c_n \le 1$.
- c) Hence prove directly that $B_n(e^x)$ converges uniformly to e^x on [0, 1].

3.

Prove that if f is a continuous function on the closed and bounded interval [a, b], then for any $\epsilon > 0$, there is a piecewise linear function F which approximates f uniformly within ϵ on the interval.

Hint: Divide the interval [a, b] into N equal subintervals at points

$$a = x_0 < x_1 < x_2 < \dots < x_N = b$$

Let P_k be a the point (x_k, y_k) where $y_k = f(x_k)$ and define the function F on each subintervals by

$$F(x) = \frac{(x_{k+1} - x)y_k + (x - x_k)y_{k+1}}{x_{k+1} - x_k}$$

4.

5.

a) Show that for any function $f \in C[0, 1]$ and any number $\epsilon > 0$, there exist a polynomial p, all of whose coefficients are rational numbers, such that

$$||p - f|| < \epsilon.$$

b) Show that C[a, b] is separable.

a) Show that if
$$f \in C[a, b]$$
, and if $\int_a^b x^n f(x) dx = 0$ for each $n = 1, 2, ...$ then $f = 0$.

b) For a $f \in C[a, b]$, the moments of f are the numbers

$$\mu_n = \int_a^b x^n f(x) dx$$

where n = 0, 1, 2, ... Prove that two continuous functions defined on [a, b] are identical if they have the same sequence of moments.

6.

- a) Show that the function $x \mapsto e^x$ on \mathbb{R} is not the uniform limit on \mathbb{R} of a sequence of polynomials. Hence the Weierstrass Approximation Theorem may fail for infinite integrals.
- b) Show that the Weierstrass Approximation Theorem fails for bounded open intervals.

7. Suppose a, b, c and d are constants chosen from an interval [-K, K] and let $\Phi \subset (C[0, \pi], d)$ be a family of functions f of the form

 $f(x) = a \sin bx + c \cos dx$ where $0 \le x \le \pi$.

Where the metric d on $C[0, \pi]$ is the uniform metric $d(f, g) = \max_{0 \le x \le \pi} |f(x) - g(x)|$.

- a) Show that Φ is a compact subset of $(C[0, \pi], d)$
- b) Show that for any continuous function g defined on $(C[0, \pi], d)$ there exists a, b, c and d in [-K, K] such that

$$\max_{0 \le x \le \pi} |g(x) - (a \sin bx + c \cos dx)|$$

is minimum. For obvious reasons $f \in \Phi$ is called minimax approximation of g.