Your Name Math Analysis II HW 6 03/26/13

Let f be a function on [a, b] that is differentiable at x_0 . Let T(x) be the tangent line to f at x_0 . Then prove that T is the <u>unique</u> linear function with the property that

$$\lim_{x \to x_0} \frac{f(x) - T(x)}{x - x_0} = 0$$

Assume f and g are differentiable at a. Find: 1. $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$ 2. $\lim_{x \to a} \frac{f(x)g(a) - f(a)g(x)}{x - a}$

Let
$$f$$
 be differentiable at a . Find:
1. $\lim_{x \to a} \frac{a^n f(x) - x^n f(a)}{x - a}$ where $n \in N$.
2. $\lim_{n \to \infty} n(f(a + \frac{1}{n}) + f(a + \frac{2}{n} + \dots + f(a + \frac{k}{n} - kf(a)))$ where $k \in N$.

If f is differentiable on an interval [a, b] and α satisfies $f'(a) < \alpha < f'(b)$ (or $f'(a) > \alpha > f'(b)$) then show that there exists a point $c \in (a, b)$ where $f'(c) = \alpha$. Hint: Define $g(x) = f(x) - \alpha x$ and show that g'(c) = 0 for some $c \in (a, b)$.

Use the Mean Value Theorem for functions of one variable to prove the following inequalities 1. sinx < x and $cosx > 1 - \frac{x^2}{2}$ for $0 < x \le \frac{\pi}{2}$ 2. $x - \frac{x^3}{6} < sinx$ and $cosx < 1 - \frac{x^2}{2} + \frac{x^4}{24}$ for $0 < x \le \frac{\pi}{2}$.

1. Let f be a C'' function on [0, 1] with f(0) = f(1) = 0, and suppose that $|f''(x)| \le A$ for all x, 0 < x < 1. Show that $|f'(\frac{1}{2}| \le \frac{A}{4}$ and that $|f'(x)| \le \frac{A}{2}$ for $0 < x \le 1$. 2. If f(0) = 0 and $|f'(x)| \le M|f(x)|$ for $0 \le x \le L$, show that on that interval $f(x) \equiv 0$.

Find the second order Taylor polynomial for the following functions at the indicated points. 1. $f(x, y) = \frac{1}{x^2 + y^2 + 1}$ at $\overrightarrow{a} = (0, 0)$. 2. $f(x, y) = e^{2x + y}$ at $\overrightarrow{a} = (0, 0)$. 3. $f(x, y) = e^{2x} \cos 3y$ at $\overrightarrow{a} = (0, \pi)$.

Find the Hessian matrix $Hf(\overrightarrow{a})$ for the following functions at the indicated points. 1. $f(x,y) = \frac{1}{x^2+y^2+1}$ at $\overrightarrow{a} = (0,0)$. 2. $f(x,y,z) = x^3 + x^2y - yz^2 + 2z^3$ at $\overrightarrow{a} = (1,0,1)$.

Find the third-order Taylor polynomial $P_3(x, y, z)$ for $f(x, y, z) = e^{x+2y+3z}$ at (0, 0, 0).

A function $f: R \to R$ is called <u>analytic</u> function provided that

$$f(x+h) = f(x) + f'(x)h + \dots + \frac{f^k(x)}{k!}h^k + \dots$$

i.e, the series on the right-hand side converges and equals to f(x + h). Show that the function defined as:

$$f(x) = \begin{cases} e^{-\frac{1}{x}} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

is a C^{∞} function , but f is not analytic.