Your Name Math Analysis II HW 7 04/09/13

1. Let $f(x,y) = (\cos y + x^2, e^{x+y})$ and $g(u,v) = (e^{u^2}, u - \sin v)$ Write a formula for $f \circ g$ and calculate $D(f \circ g)(0,0)$ using the chain rule.

2. If f(0,0) = 0 and

$$f(x,y) = \frac{xy}{x^2 + y^2}$$
 if $(x,y) \neq (0,0)$

Prove that partial derivatives $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ exists at every point of \mathbb{R}^2 , although f is not continuous at (0,0).

3. Suppose f is a differentiable mapping of \mathbb{R} into \mathbb{R}^3 such that |f(t)| = 1 for every t. Prove that $f'(t) \cdot f(t) = 0$. Interpret this result geometrically.

4. We say $f : \mathbb{R}^n \to \mathbb{R}$ is **homogeneous of degree** l if for all $\lambda > 0$ $f(\lambda p) = \lambda^l f(p)$ holds. For example the function $f : \mathbb{R}^3 \to \mathbb{R}$ defined as $f(x, y, z) = x^2 + 2yz$ is homogeneous of degree 2. Prove that $f : \mathbb{R}^n \to \mathbb{R}$ is homogeneous of degree l if and only if $p \cdot \nabla f(p) = lf(p)$ Hint: Consider a new function defined as $F(x_1, x_2, \dots, x_n, \lambda) = \lambda^{-l} f(\lambda x_1, \lambda x_2, \dots, \lambda x_n)$

5. Use Hessian Criterion to identify the local extrema for the following functions: a $f(x,y) = \ln(x^2 + y^2 + 1)$ b $f(x,y,z) = x^3 + xz^2 - 3x^2 + y^2 + 2z^2$

6. Prove that for every $A \in L(\mathbb{R}^n, \mathbb{R})$ corresponds to a unique $y \in \mathbb{R}^n$ such that $Ax = x \cdot y$. Prove also ||A|| = |y|.

7. Suppose that f is a differentiable mapping of a <u>connected</u> open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , and if f'(x) = 0 for every $x \in \mathbb{R}^n$, prove that f is constant in E.

8. Use the one dimensional MVT to prove: If f, f_x and f_y are continuous on a circular region containing $A(x_0, y_0)$ and $B(x_1, y_1)$ then there is a point (x^*, y^*) on the line segment joining the points A and B such that

$$f(x_1, y_1) - f(x_0, y_0) = f_x(x^*, y^*)(x_1 - x_0) + f_y(x^*, y^*)(y_1 - y_0)$$

This result is known as two dimensional MVT.

[Hint: Set F(t) = f(x(t), y(t)) where x(t) and y(t) represents the parametric equation of the line connecting A to B, then apply the one dimensional MVT to F(t) on the interval [0, 1].]

9. Let f be continuous on $[a, b] \times [c, d]$ and; for a < x < b, c < y < d, define

$$F(x,y) = \int_{a}^{x} \int_{c}^{y} f(u,v) dv du$$

Show that

$$\frac{\partial^2 F}{\partial x \partial y} = \frac{\partial^2 F}{\partial y \partial x} = f(x, y)$$

Use this example to discuss the relationship between Fubini's Theorem and equality of mixed partial derivatives.