Prof. Asuman Aksoy Math Analysis I HW 1 Due 01/26/2012

- 1) For two sets A and B show that the following statements are equivalent.

 - a) A ⊆ B
 b) A ∪ B = B
 c) A ∩ B = A

Hint: Show that $a) \Rightarrow b$, b, b $\Rightarrow c$ and c $\Rightarrow a$

- 2) Give a simple description of each of the following sets

 - d) $\bigcap_{k \in \mathbb{N}} [-\frac{k-1}{k}, \frac{k+1}{k}]$

3)

Establish the following set theoretic relations:

- a) $A \cup B = B \cup A$, $A \cap B = B \cap A$ (Commutativity)
- b) $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$ (Associativity)
- c) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (Distributivity)
- d) $A \subseteq B \iff B^c \subseteq A^c$
- e) $A \setminus B = A \cap B^c$
- f) $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$ (De Morgan's laws)

Note that for $A \subseteq \mathbb{R}$, the <u>complement</u> of A, written A^c , refers to the set of all elements of \mathbb{R} not in A. Thus,

$$A^{c} = \{x \in \mathbb{R}: \ x \notin A\}$$

_

4) Use the induction argument to prove that

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

for all natural numbers $n \geq 1$.

5) Use the induction argument to prove that $n^3 + 5n$ is divisible by 6 for all natural numbers $n \ge 1$.

- 6) Let f,g be two functions defined from $\mathbb R$ into $\mathbb R$. Translate using quantifiers the following statements:
 - a) f is bounded above;
 - b) f is bounded;
 - c) f is even;
 - d) f is odd;
 - e) f is never equal to 0;
 - f) f is periodic;
 - g) f is increasing;
 - h) f is strictly increasing;
 - i) f is not the 0 function;
 - j) f does not have the same value at two different points;
 - k) f is less than g;
 - 1) f is not less than g.
- 7) Consider the four statements
 - (a) $\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y > 0;$
 - (b) $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} \ x + y > 0;$
 - (c) $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ x + y > 0$;
 - $(d) \quad \exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \quad y^2 > x.$
 - a) Are the statements a, b, c, d true or false?
 - b) Find their negations.
- 8) Show by induction that if X is a finite set with n elements, then $\mathcal{P}(X)$, the power set of X (i.e. the set of subsets of X), has 2^n elements.

3