1. Let $X \neq 0$ be a real or complex linear space. Prove that there is at least one norm on X. Hint. Every linear space has a basis.

- 2. Given a function $p: X \to [0, \infty)$ with the properties
 - a) $p(x) = 0 \Leftrightarrow x = 0$
 - b) $p(\lambda x) = |\lambda| p(x)$ for all $x \in X$ and $\lambda \in K$.

Show that p is a norm if and only if $B_X = \{x \in X : p(x) \le 1\}$ is convex. (i.e., The triangle axiom and the convexity of the closed unit ball are equivalent)

3. Let a > 0. On C[0, 1] consider the following norms:

$$||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|$$
$$||f||_{1} = a \int_{0}^{1} |f(t)| dt.$$

Prove that $||f|| = \min\{||f||_{\infty}, ||f||_1\}$ is a norm on C[0, 1] if and only if $a \leq 1$. This problem shows minimum of two norms is not a norm in general. Show that maximum of two norms is indeed a norm.

4. Let $X = \mathfrak{M}_{n,m}(\mathbb{R})$ be the real vector space of $n \times m$ matrices with real entries. Given $A, B \in \mathfrak{M}_{n,m}(\mathbb{R})$, set

$$(A,B) = tr(A^t B)$$

where by "tr" we mean the trace of a square matrix. i.e., the sum of the entries lying in the diagonal.

- a) Show that (.,.) is an inner product on $\mathfrak{M}_{n,m}(\mathbb{R})$.
- b) Deduce that $A \mapsto ||A|| = \sqrt{tr(A^t A)}$ is a norm on X.

5. Show that every Hilbert space is uniformly convex. A normed linear space is said to be **uniformly convex** if for every $\epsilon > 0$ there exists a $\delta = \delta(\epsilon) > 0$ independent of x and y such that $||x|| \leq 1$, $||y|| \leq 1$, $||x - y|| \geq \epsilon$ implies $||\frac{1}{2}(x + y)|| \leq 1 - \delta$.

6.

a) Suppose f is supported on a set E of finite measure. If $f \in L^2(\mathbb{R}^n)$, then show that $f \in L^1(\mathbb{R}^n)$ and that

$$||f||_{L^1(\mathbb{R}^n)} \le m(E)^{\frac{1}{2}} ||f||_{L^2(\mathbb{R}^n)}$$

b) If $|f(x)| \leq M$ (f is bounded) and $f \in L^1(\mathbb{R}^n)$, then $f \in L^2(\mathbb{R}^n)$ and that

$$||f||_{L^2(\mathbb{R}^n)} \le M^{\frac{1}{2}} ||f||_{L^1(\mathbb{R}^n)}^{\frac{1}{2}}$$

7. Show that $L^2(\mathbb{R}^n)$ is **separable**. i.e., There exists a countable dense set in $L^2(\mathbb{R}^n)$.