1. Show that the inner product in a Hilbert space is jointly continuous. That is if $x_n \to x$ and $y_n \to y$, then $(x_n, y_n) \to (x, y)$ as $n \to \infty$.

2. Let $f \in \ell^2$, define

$$|||f||| = ||f||_2 + ||f||_{\infty} = (\sum_{n=1}^{\infty} |f(n)|^2)^{1/2} + \max|f(n)|.$$

Show that $(\ell^2, |||.|||)$ is not an inner product space.

3. If
$$a = \{a_k\}$$
 belongs to ℓ^p for some $p < \infty$, then show that

$$\lim_{p \to \infty} ||a||_p = ||a||_{\infty}$$
where $||a||_p = (\sum_k |a_k|^p)^{1/p}$ for $0 ; $||a||_{\infty} = \sup_k |a_k|$.
Hint: Since $|a_k| \to 0$, there is a largest $|a_k|$ say $|a_{k_0}|$ such that $||a||_{\infty} = |a_{k_0}|$.$

4. Consider $L^p(X)$ where (X, μ) is a measure space and $p \in (1, \infty)$. Let $q \in (1, \infty)$ be the conjugate of p. We say a sequence (f_n) in $L^p(X)$ converges weakly to an element f in $L^p(X)$ if

$$\lim_{n \to \infty} \int_X f_n g \ d\mu = \int_X f g \ d\mu$$

for every $g \in L^q(X)$. Show that if a sequence $(f_n) \in L^p$ converges to an element of $f \in L^p$ in the norm of L^p , then $(f_n) \in L^p$ converges weakly to f.

5. Suppose f is a measurable function on \mathbb{R}^n

- a) Show that f is essentially bounded on \mathbb{R}^n if and only if $||f||_{\infty} < \infty$
- b) Show that $|f| \leq ||f||_{\infty}$
- c) If $||f||_{\infty} < \infty$, then show that f is essentially bounded and $||f||_{\infty}$ is an essential bound for f.

Hint for part b): When $||f||_{\infty} < \infty$, for every $k \in \mathbb{N}$ there exists an essential bound M_k of f such that $M_k < ||f||_{\infty} + 1/k$, furthermore

$$\{x: |f(x)| > ||f||_{\infty}\} = \bigcup_{k \in \mathbb{N}} \{x: |f(x)| > ||f||_{\infty} + 1/k\}$$

6. (Hölder's inequality for p = 1 and $q = \infty$) Suppose f and g are two measurable functions such that $|f|, |g| < \infty$ a.e.x

a) Excepting the case that one of $||f||_1$ and $||g||_{\infty}$ is equal to 0 and the other is equal to ∞ show that

$$||fg||_1 \le ||f||_1 ||g||_{\infty}$$

b) When $||f||_1$, $||g||_{\infty} < \infty$, show that the equality in the above inequality holds if and only if

 $|g| = ||g||_{\infty}$ a.e. on $\{x: f(x) \neq 0\}$

- 7. Let X be a measure space with m(X) = 1.
 - a) If f and g are in $L^1(X)$ are two positive functions satisfying $f(x) \cdot g(x) \ge 1$ for almost all x, show that

$$\left(\int f dx\right) \left(\int g dx\right) \ge 1$$

b) If
$$f, g \in L^2(X)$$
 with $\int f \, dx = 0$, show that
 $\left(\int f \cdot g \, dx\right)^2 \leq \left[\int g^2 \, dx - \left(\int g \, dx\right)^2\right] \cdot \int f^2 \, dx$

Hint: Both parts a) and b) require Hölder's inequality. For part b) set $\alpha = \int g \, dx$ and observe $|\int f \cdot g \, dx| = |\int (f \cdot g - \alpha \cdot f) \, dx|$