1. Let X be a normed linear space and B be a Banach space. Let M be a dense subspace of X and F_0 bounded linear map from M into B. Show that there exists a unique bounded linear map $F: X \to B$ such that

$$F_M = F_0$$
 and $||F|| = ||F_0||$.

2. Show that if a normed linear space X is reflexive then it is reflexive in any equivalent norm.

3. Let $E \subseteq C[0,1]$ be a closed linear subspace consisting of only C^1 functions. Prove that E is finite dimensional.

Hint: Consider the differentiation operator $D : E \to C[0,1]$ defined by D(f) = f'. Use closed graph theorem to show D is continuous. Then show B_E is uniformly bounded. Refer to Arzela-Ascoli Theorem to assure that $B_E \subseteq (C[0,1], ||.||_{\infty})$ is relatively compact. Riesz Theorem implies E is finite dimensional.

4. On C[0, 1] consider the following norms:

$$||f||_{\infty} = \sup\{|f(x)|: x \in [0,1]\}$$
 and $||f||_{1} = \int_{0}^{1} |f(x)| dx$

Show that the identity operator $I : (C[0,1], ||f||_{\infty}) \to (C[0,1], ||f||_1)$ is continuous, onto but not open. Why does this not contradict the open mapping theorem?

5. Let (T_n) be a sequence of bounded linear maps of a Banach space X into another Banach space Y. Assume that for each $y^* \in Y^*$ and $x \in X$ there is a constant k such that $|y^*(T_n x)| \leq k$ for each $n \in \mathbb{N}$. If there is a dense subset A of X for which $(T_n x)$ converges for every $x \in A$, show that $(T_n x)$ converges for every $x \in X$. Hint: It is enough to show $(T_n x)$ is Cauchy in Y. Use uniform boundedness principle. 6. Let X and Y be Banach spaces and $T:X\to Y$ is a linear map. For all $x\in X$ define $||x||_1=||x||+||Tx||.$ Let

a) T has closed graph

- b) $(X, ||.||_1)$ is a Banach space
- c) T is bounded.

Show that a \Leftrightarrow b) and a $) \Leftrightarrow$ c).

7. Let X be a vector space of all real valued functions on [0,1] having continuous first order derivatives. Show that $||f|| = |f(0)| + ||f'||_{\infty}$ is a norm on X that is equivalent to the norm $||f||_{\infty} + ||f'||_{\infty}$. Hint: Use $f(x) = f(0) + \int_0^x f'(t) dt$.

8.

a) State Baire's Theorem

b) Show that the set of irrational numbers is not a countable union of closed subsets of \mathbb{R} .

Hint: First observe closed and proper vector subspace of a normed space is nowhere dense. Then assume the contrary to part b) and use Baire's thm since \mathbb{R} is a complete metric space.