Asuman Güven Aksoy (Claremont McKenna College) and Timur Oikhberg (University of California at Irvine)

Metric Trees

Let *M* be a metric space with metric *d*.

Definition 1. For $x, y \in M$, a *geodesic segment* from x to y is the image of an isometric embedding $\alpha : [a, b] \rightarrow M$ such that $\alpha(a) = x$ and $\alpha(b) = y$. The geodesic segment will be called *metric segment* and is denoted by [x, y].

Definition 2. We call *M* a *metric tree* if for any $x, y, z \in M$, the following hold:

1. there is a unique metric segment between x and y. 2. if $[x, z] \cap [z, y] = \{z\}$, then $[x, z] \cup [z, y] = [x, y]$.

The following is an example of metric tree.

Example 1. Let ρ denote the Euclidean metric on \mathbb{R}^2 . We define the *radial metric* by

 $d(x,y) = \begin{cases} \rho(x,y) & \text{if } y = tx \text{ for some } t \in \mathbb{R} \\ \rho(x,0) + \rho(y,0) & \text{otherwise.} \end{cases}$

Definition 3. Let *M* be a metric tree, and let $A \subseteq M$. We call $F_A = \{f \in A : f \notin (x, y) \text{ for all } x, y \in A\}$ the set of *final points* of *A*. Here, $(x, y) = [x, y] \setminus \{x, y\}$.

This concept leads us to a characterization of compact metric trees.

Theorem 1. (*Aksoy, Borman, Westfahl*) *A metric tree* (*M*, *d*) *is compact if and only if* $M = \bigcup_{f \in F_M} [a, f]$ for all $a \in M$, and \overline{F}_M is compact.

Hyperconvexity

Definition 4. A metric space *M* is called *hyperconvex* if $\bigcap_{i \in I} B_c(x_i, r_i) \neq \emptyset$ for any collection $\{B_c(x_i; r_i)\}_{i \in I}$ of closed balls in *X* with $x_i x_j \leq r_i + r_j$.

Theorem 2. (*Aronszajn and Panitchpakdi*) X *is a hyperconvex metric space if and only if for all metric spaces* D, *if* $C \subset D$ and $f : C \to X$ *is a nonexpansive mapping, then* f*can be extended to the nonexpansive mapping* $\tilde{f} : D \to X$. The simplest example of hyperconvex space is the set of real numbers \mathbb{R} or a finite dimensional real Banach space endowed with the maximum norm.

Banach Algebras 2009 Some Results on Metric Trees

While the Hilbert space ℓ^2 fails to be hyperconvex, the spaces ℓ^{∞} and L^{∞} are hyperconvex. The connection between hyperconvex metric spaces and metric trees is given in the following theorem: **Theorem 3.** (*Aksoy and Kirk*) *A complete metric tree T is hyperconvex*.

Embeddings of Metric Trees

Definition 5. Let *X* be a metric space. Define $\ell^{\infty}(X)$, as the normed linear space where

$$\ell^{\infty}(X) := \left\{ (x_m)_{m \in X} \mid x_m \in \mathbb{R}, \sup_{m \in X} |x_m| < \infty \right\}$$

and $\|(x_m)\| := \sup_{m \in X} |x_m|.$

Theorem 4. (*Kirk and Sims*) Let X be a metric space and $a \in X$, then

 $J: X \to \ell^{\infty}(X)$ where $J(x) = (xm - am)_{m \in X}$ is an isometric embedding of X into $\ell^{\infty}(X)$.

We define a "canonical" embedding $J = J_{x^*}$ of tree T into $\ell_{\infty}(T)$ (x^* is a point in T) by

 $J_{x^*}(x)(y) = J(x)(y) = d(x,y) - d(x^*,y).$

When *T* is finite, we can also use the embedding

J(x)(y) = d(x, y).

We also use the "semicanonical" embedding of Tinto ℓ_1 (for such embedding see Section 2.5 of S. Evans, *Probability and real trees*). We have not been able to construct explicit embeddings of metric trees into other Banach spaces. However, we can show:

Theorem 5. Suppose X is a superreflexive Banach space, T is a finitely generated metric tree, and $\varepsilon > 0$. Then there exists a Banach space Y, $(1 + \varepsilon)$ -isomorphic to X, such that T embeds into Y isometrically.

Barycenters in Metric Trees

Suppose *U* is an isometric embedding of a metric tree *T* into a Banach space *X*, equipped with the norm $\|\cdot\|$. Suppose $x_1, \ldots, x_n \in T$, and let $\tilde{x}_0 = (x_1 + \ldots + x_n)/n$ be their barycenter in *X* (we identify $x \in T$ with $U(x) \in X$). Let $\mathbf{P} = \mathbf{P}_{U,T,X}$ be the set of contractive retractions π from X onto U(T) (it is non-empty since T is injective). We try to describe $\mathbf{P}(\tilde{x}_0)$. More generally, suppose $\alpha = (\alpha_i)_{i=1}^n$ is a sequence of positive numbers, with $\sum_{k=1}^n \alpha_k = 1$. Set $\tilde{x}^{(\alpha)} = \sum_{k=1}^n \alpha_k x_k$, and try to describe $\mathbf{P}(\tilde{x}^{(\alpha)})$.

Theorem 6. Suppose T is a complete metric tree, embedded into $\ell_{\infty}(T)$ in the canonical way. For $x_0 \in T$, the following are equivalent:

1. $x_0 \in \mathbf{P}(\tilde{x}^{(\alpha)}).$

2. $||x_0 - x|| \le \sum_k \alpha_k ||x_k - x||$ for any $x \in T$.

Theorem 7. Suppose T is a finitely generated tree, embedded into ℓ_1 in the semicanonical way. For $x_0 \in T$, the following are equivalent:

1. $x_0 \in \mathbf{P}(\tilde{x}^{(\alpha)}).$

2. $||x_0 - x|| \le \sum_k \alpha_k ||x_k - x||$ for any $x \in T$.

Proposition 8. Suppose a complete metric tree T is embedded isometrically into a normed space X, and \tilde{x} is a point of X. Then $\mathbf{P}(\tilde{x})$ is a closed, metric convex subset of T.

Type and Cotype

We say that a metric space (X, d) satisfies *the four-point inequality* if, for any $x_1, x_2, x_3, x_4 \in X$, $d(x_1, x_2) + d(x_3, x_4) \leq \max\{d(x_1, x_3) + d(x_2, x_4), d(x_1, x_4) + d(x_2, x_3)\}.$

Theorem 9. *For type and cotype of metric trees we have:*

- Any metric space satisfying the four-point inequality has metric type 2, with constant 1. In particular, this result holds for metric trees.
- 2. Any complete metric tree has metric cotype 2, with a universal constant.

Entropy Quantities

Definition 6. In the following, for ϵ -cover sets of diameter $\leq 2\epsilon$ and for ϵ -net balls of radius ϵ is used.

1. Let $\mathcal{N}_{\epsilon}(A)$ be the cardinality of a minimal ϵ -cover of A. Then define the ϵ -entropy of A as

 $\mathcal{H}_{\epsilon}(A) := \log_2 \mathcal{N}_{\epsilon}(A).$

Similarly, let $\mathcal{N}_{\epsilon}^{M}(A)$ be the cardinality of a minimal ϵ -net for A in M. Then define the ϵ -entropy of A relative to M as

$$\mathcal{H}^{M}_{\epsilon}(A) := \log_2 \mathcal{N}^{M}_{\epsilon}(A).$$

- 2. *A* is *centered* if for all $U \subset A$ such that diam(U) = 2r, there exists $a \in A$ such that $U \subset B_c(a;r)$.
- 3. Given a normed linear space *X* and subset *A*, define the *nth Kolmogorov diameter* (*n*-width) of *A* in *X* as:

$$\delta_n(A) := \inf \left\{ \sup_{a \in A} d(a, M_n) \mid M_n \text{ is a } n\text{-dim subsp. of } X \right\}$$

4. Let *T* be a metric tree and $A \subset T$, then define the *nth Kolmogorov diameter of A in* $\ell^{\infty}(T)$ as:

$$\delta_n(A) := \delta_n(J(A), \ell^{\infty}(T)).$$

Recall that for a metric tree T, we have the isometric embedding $J : T \to \ell^{\infty}(T)$. If T is a complete metric tree, then T is hyperconvex and thus injective so we have a nonexpansive projection $P : \ell^{\infty}(T) \to T$, and where $P \circ J = \operatorname{id}_T$.

Theorem 10. For entropy quantities and other measures of noncompactness in metric trees we have:

- 1. Every complete metric tree T is centered.
- 2. For a complete metric tree T, if $A \subset T$, then

$$\mathcal{H}_{\epsilon}^{T}(A) = \mathcal{H}_{\epsilon}(A).$$

3. Suppose S is a compact subset of a complete metric tree T, and $\varepsilon_1, \varepsilon_2$ are positive numbers. Then

$$\int_{\varepsilon_1+\varepsilon_2} (con(S)) \leq \mathcal{N}_{\varepsilon_1}(S) [\operatorname{diam} S/(4\varepsilon_2)].$$

- 4. If *T* is a complete metric tree, where $A \subset T$ bounded, then $\lim_{n \to \infty} \delta_n(A) = \beta(A).$
- *Where* $\beta(A)$ *is the Hausdorff measure of noncompactness defined as*

$$\beta(A) := \inf \left\{ b > 0 \mid A \subset \bigcup_{j=1}^{n} B(x_j; b) \text{ for some } x_j \in T \right\}$$

Acknowledgments

The first named author thanks the European Science Foundation (ESF-EMS-ERCOM partnership) for conference support. E-mail: aaksoy@cmc.edu